LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biomechanical Stress and Inflammation Linked Using Muscle Cells

By LabMedica International staff writers
Posted on 15 Mar 2017
Image: The organ-on-a-chip platform seeks to recapitulate the complex microenvironment of blood vessels using miniaturized microfluidic devices (Photo courtesy of Joao Ribas, Brigham and Women\'s Hospital).
Image: The organ-on-a-chip platform seeks to recapitulate the complex microenvironment of blood vessels using miniaturized microfluidic devices (Photo courtesy of Joao Ribas, Brigham and Women\'s Hospital).
A team of biomedical engineers used induced pluripotent stem cells from patients with Hutchinson-Gilford progeria syndrome (HGPS) to investigate the relationship between biomechanical stress and inflammation in an organ-on-a-chip device that mimicked the microenvironment of the cardiovascular system.

HGPS is a premature aging disease showing accelerated vascular aging, leading to the death of patients at an early age due to cardiovascular diseases. The syndrome targets primarily vascular cells, which reside in mechanically active tissues. It has been difficult to study vascular aging in the laboratory, as most models fail to mimic the biomechanics that cells experience in the body.

Investigators at Brigham and Women's Hospital developed an organ-on-a-chip model system that enabled the effects of biomechanical strain to be examined in the context of vascular aging and disease. The device consisted of a top fluidic channel and underlying vacuum channel, which mimicked, upon pressure, the mechanical stretching that cells experience within blood vessels.

The investigators loaded the device with smooth muscle cells (SMCs) derived from pluripotent stem cells taken from either normal donors or from patients with HGPS. They reported in the February 17, 2017, online edition of the journal Small that physiological strain induced a contractile phenotype in primary smooth muscle cells, while a pathological strain induced a hypertensive phenotype similar to that of angiotensin II treatment. SMCs derived from human induced pluripotent stem cells of HGPS donors (HGPS iPS-SMCs), but not from healthy donors, showed an exacerbated inflammatory response to strain. In particular, increased levels of inflammation markers as well as DNA damage were observed. Drug treatment reversed the strain-induced damage by shifting the gene expression profile away from inflammation.

The progeria-on-a-chip model was deemed to be a relevant platform to study biomechanics in vascular biology, particularly in the setting of vascular disease and aging, while simultaneously facilitating the discovery of new drugs and/or therapeutic targets. "Vascular diseases and aging are intimately linked yet rarely studied in an integrated approach," concluded the investigators. "Gaining a deeper understanding of the molecular pathways regulating inflammation during vascular aging might pave the way for new strategies to minimizing cardiovascular risk with age."

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
8-Channel Pipette
SAPPHIRE 20–300 µL

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more