LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Culture Method for Activation of Cancer-Fighting T-Cells

By LabMedica International staff writers
Posted on 02 Mar 2017
Image: A novel in vitro culture method enables disease fighting immune T-cells to overcome cancer\'s immunosuppressive effect (Photo courtesy of the Mayo Clinic).
Image: A novel in vitro culture method enables disease fighting immune T-cells to overcome cancer\'s immunosuppressive effect (Photo courtesy of the Mayo Clinic).
A novel in vitro culture method enables disease fighting immune T-cells to overcome cancer's immunosuppressive effect in order to recognize and attack tumor cells upon being returned to the body.

Development of effective adoptive immunotherapy for many types of human cancer has been slow, often due to difficulties achieving robust expansion of natural tumor-specific T-cells from peripheral blood. Investigators at the Mayo Clinic and the University of Washington hypothesized that antigen-driven T-cell expansion might best be triggered in vitro by acute activation of innate immunity to mimic a life-threatening infection.

To examine this theory, they subjected unfractionated peripheral blood mononuclear cells (PBMC) to a two-step culture regimen, first synchronizing their exposure to exogenous antigens with aggressive surrogate activation of innate immunity, followed by gamma-chain cytokine-modulated T-cell hyperexpansion.

In the first step, the PBMC culture was treated with granulocyte-macrophage colony-stimulating factor (GM-CSF) plus paired Toll-like receptor agonists (resiquimod and LPS), which stimulated abundant IL-12 and IL-23 secretion. At this point the culture was exposed to various tumor antigens including MUC1 (Mucin 1, cell surface associated), a protein expressed by a large majority of cancers, including breast, pancreatic, lung, colorectal, ovarian, kidney, bladder, and multiple myeloma. Also included were HER2/neu (human epidermal growth factor receptor 2), a protein present in one-quarter to half of many types of cancer, and CMVpp65, a protein present in half of primary brain tumors.

In the second step, exposure to exogenous IL-7 or IL-7+IL-2 produced selective and sustained expansion of both CD4+ and CD8+ peptide-specific T-cells with a predominant interferon-gamma-producing T1-type, as well as the antigen-specific ability to lyse tumor targets. The investigators reported in the February 14, 2017, issue of the journal Oncotarget that it only took about three weeks to grow out cultures of natural T- cells able to recognize and target cancers expressing these proteins.

“Even though it is relatively easy to collect billions of T-cells directly from patient blood, it has historically proved difficult or impossible to unleash those T-cells’ natural ability to recognize and target cancer cells,” said senior author Dr. Peter Cohen, an immunotherapist at the Mayo Clinic. “We are pleased to help other investigators implement our culture method for their own cancer-associated proteins of interest.”

Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more