LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Defects in Newly Identified Molecular Pathway Lead to Parkinson's Disease

By LabMedica International staff writers
Posted on 16 Feb 2017
Image: Dopamine-making cells in a mouse brain (Photo courtesy of Sung-ung Kang, Johns Hopkins University).
Image: Dopamine-making cells in a mouse brain (Photo courtesy of Sung-ung Kang, Johns Hopkins University).
A molecular pathway has been traced that protects dopamine producing neurons and prevents Parkinson's disease, and this finding may pave the way for development of drugs to correct defects in this pathway in individuals who have the disease.

Previous work had demonstrated that mutations in the PINK1 (PTEN-induced putative kinase 1) gene and the parkin enzyme caused autosomal-recessive Parkinson’s disease through a common pathway involving mitochondrial quality control. Parkin inactivation was found to lead to accumulation of the PINK1 substrate, PARIS (Zinc Finger Protein 746, or parkin interacting substrate), which was shown to play an important role in dopamine cell loss.

In the current study, investigators at Johns Hopkins University found that PARIS linked PINK1 and parkin in a common pathway that regulated dopaminergic neuron survival. PINK1 interacted with and phosphorylated PARIS to control its ubiquitination and clearance for removal from the cell by parkin.

Results published in the January 24, 2016, online edition of the journal Cell Reports revealed that conditional knockdown of PINK1 in adult mouse brains led to a progressive loss of dopaminergic neurons in the substantia nigra region of the brain that was dependent on the resulting increase in levels of PARIS.

"Mutations in the genes for both Parkin and PINK1 have now been linked to Parkinson's disease," said senior author Dr. Ted Dawson, professor of neurology at Johns Hopkins University. "Parkin is a particularly big player that seems to be at fault in many inherited cases; it is also inactivated in sporadic cases of the disease. So a drug targeting PARIS could potentially help many patients."

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Gold Member
Collection and Transport System
PurSafe Plus®

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more