LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Stem Cell-Generated Stomach Organoids to Boost Gastric Disease Research

By LabMedica International staff writers
Posted on 24 Jan 2017
Image: A confocal microscopic image showing tissue-engineered human stomach tissues from the corpus/fundus region, which produces acid and digestive enzymes (Photo courtesy of Cincinnati Children\'s Hospital Medical Center).
Image: A confocal microscopic image showing tissue-engineered human stomach tissues from the corpus/fundus region, which produces acid and digestive enzymes (Photo courtesy of Cincinnati Children\'s Hospital Medical Center).
Research on gastric diseases will benefit from the development of complex organoid structures containing functional stomach fundic epithelium tissue that were generated from human pluripotent stem cells.

Despite the global prevalence of gastric disease, there are few adequate models in which to study the fundus epithelium of the human stomach. To fill this gap, investigators at Cincinnati Children's Hospital Medical Center differentiated human pluripotent stem cells (hPSCs) into gastric organoids containing fundic epithelium by first identifying and then recapitulating key events in embryonic fundus development.

The investigators reported in the January 4, 2017, online edition of the journal Nature that disruption of Wnt/beta-catenin signaling in mouse embryos led to conversion of fundic to antral epithelium, and that beta-catenin activation in hPSC-derived foregut progenitors promoted the development of human fundic-type gastric organoids (hFGOs). The investigators then used hFGOs to identify temporally distinct roles for multiple signaling pathways in epithelial morphogenesis and differentiation of fundic cell types, including chief cells and functional parietal cells.

"Now that we can grow both antral- and corpus/fundic-type human gastric mini-organs, it is possible to study how these human gastric tissues interact physiologically, respond differently to infection, injury and react to pharmacologic treatments," said senior author Dr. James M. Wells, director of the pluripotent stem cell facility at Cincinnati Children's Hospital Medical Center. "Diseases of the stomach impact millions of people in the United States and gastric cancer is the third leading cause of cancer-related deaths worldwide."

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
Urine Chemistry Control
Dropper Urine Chemistry Control

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more