LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Carbon Monoxide-Releasing Compounds as Novel Antibacterial Drugs

By LabMedica International staff writers
Posted on 19 Jan 2017
Image: A gonorrhea infection caused by the bacterium Neisseria gonorrhoeae (Photo courtesy of the University of York).
Image: A gonorrhea infection caused by the bacterium Neisseria gonorrhoeae (Photo courtesy of the University of York).
A team of British molecular microbiologists has demonstrated the potential use of carbon monoxide (CO)-releasing compounds for treatment of gonorrhea.

Gonorrhea, which is caused by the bacterium Neisseria gonorrhoeae, has developed some highly drug-resistant strains, which has raised concern that the second most common sexually transmitted infection in England may become untreatable.

Investigators at the University of York have been examining the potential for carbon monoxide-releasing molecules (CO-RMs) as antimicrobial agents, which represents an exciting prospective in the fight against antibiotic resistance. This field is especially attractive since Trypto-CORM, a tryptophan-containing manganese(I) carbonyl compound, was shown to be toxic against E. coli following photo-activation.

The investigators reported in the December 6, 2016, online edition of the journal MedChemComm that Trypto-CORM was toxic against Neisseria gonorrhoeae in the absence of photoactivation. Trypto-CORM toxicity could be reversed by the high CO affinity globin leg-hemoglobin (Leg-Hb), indicating that the toxicity was due to CO release.

Release of CO from Trypto-CORM in the dark was also detected with Leg-Hb (but not myoglobin) in vitro. Since N. gonorrhoeae is more sensitive to CO-based toxicity than other model bacterial pathogens, it may prove to be a viable candidate for antimicrobial therapy using CO-RMs.

Contributing author Dr. Ian Fairlamb, professor of chemistry at the University of York, said, "The carbon monoxide molecule targets the engine room, stopping the bacteria from respiring. Gonorrhea only has one enzyme that needs inhibiting and then it cannot respire oxygen and it dies. People will be well aware that CO is a toxic molecule but that is at high concentrations. Here we are using very low concentrations, which we know the bacteria are sensitive to. We are looking at a molecule that can be released in a safe and controlled way to where it is needed. We think our study is an important breakthrough. It is not the final drug yet but it is pretty close to it. People might perceive gonorrhea as a trivial bacterial infection, but the disease is becoming more dangerous and resistant to antibiotics."

Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Automatic CLIA Analyzer
Shine i9000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more