LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

MicroRNA Regulation Critical for Development of Pediatric Brain Tumors

By Gerald M. Slutzky, PhD
Posted on 14 Dec 2016
Image: The nCounter system offers a simple, cost-effective way to simultaneously profile hundreds of mRNAs, microRNAs, or DNA targets (Photo courtesy of NanoString).
Image: The nCounter system offers a simple, cost-effective way to simultaneously profile hundreds of mRNAs, microRNAs, or DNA targets (Photo courtesy of NanoString).
Cancer researchers have uncovered the critical role played by microRNA regulation in the development of childhood brain tumors.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Low-grade gliomas and glioneuronal tumors represent the most frequent primary tumors of the central nervous system in children. Unlike many other types of cancerous tumors, these low-grade pediatric gliomas appear to have few genetic mutations, so the molecular basis for their development has been unclear.

Investigators at Johns Hopkins University (Baltimore, MD, USA) chose to examine a possible role for miRNAs in the development of pediatric gliomas, since miRNAs had been identified as molecular regulators of protein expression/translation that could repress multiple mRNAs concurrently through base pairing, and had an important role in other cancers.

The investigators used the NanoString (Seattle, WA, USA) digital counting system to analyze the expression levels of 800 microRNAs in nine low-grade glial and glioneuronal tumor types.

They reported in the October 14, 2016, online edition of the journal Modern Pathology that a set of 61 microRNAs were differentially expressed in tumors compared with normal brain tissues, and several showed levels varying by tumor type. MicroRNAs miR-4488 and miR-1246 were overexpressed in dysembryoplastic neuroepithelial tumors compared with brain tissue and other tumors, while miR-487b was variably under-expressed in pediatric glioma lines compared with human neural stem cells.

The investigators employed lentiviral vectors to overexpress miR-487b in a pediatric glioma cell line. These modified cells were found to be less cancer-like, forming 30% fewer colonies and had decreased levels of some proteins, such as Nestin (neuroectodermal stem cell marker). Nestin is known to be important in both early development and in cancers.

Senior author Dr. Fausto J.Rodriguez, associate professor of pathology at Johns Hopkins University, said, "Physicians might be able to look at the levels of this and other microRNAs in blood or cerebrospinal fluid to test for the presence of cancer. Researchers might also be able to target microRNAs directly, altering their levels to make cancer cells less likely to form tumors. By gaining a better understanding of the fine genetic differences between cancers and healthy tissues, we can develop better therapeutic or prognostic strategies."

Related Links:
Johns Hopkins University
NanoString
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Gold Member
Hybrid Pipette
SWITCH

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more