LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Bacterial Motility Is Required to Trigger Neutrophil Immune Response

By Gerald M. Slutzky, PhD
Posted on 13 Dec 2016
Image: A photomicrograph of NETs following four hours of immunofluorescence staining (Photo courtesy of Madison Floyd, Rada Laboratory, University of Georgia).
Image: A photomicrograph of NETs following four hours of immunofluorescence staining (Photo courtesy of Madison Floyd, Rada Laboratory, University of Georgia).
A team of molecular microbiologists has found that the flagellar motion, which propels Pseudomonas aeruginosa bacteria, was required to generate an immune response, especially the production of neutrophil extracellular traps (NETs).

NETs are molecular lattices of decondensed chromatin embedded with histones, granule enzymes, and antimicrobial peptides that are extruded by immune system neutrophil granulocytes, (polymorphonuclear leukocytes or PMNs) to capture and contain bacteria, viruses, and other pathogens. Experimental evidence has indicated that NETs also cause inflammatory vascular and tissue damage, suggesting that identifying pathways that inhibit NET formation may have therapeutic implications.

Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown, and the identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. For these reasons investigators at the University of Georgia (Athens, USA) sought to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism.

The investigators reported in the November 17, 2016, online edition of the journal PLOS Pathogens that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. They identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion, since flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, did not stimulate NET formation in human neutrophils.

Flagellar motility, not flagellum binding to neutrophils mediated NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. However, forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability.

"This previously uncharted territory suggests not only the importance of bacterial motility but also that neutrophils are a key cell type to study with regards to P. aeruginosa infections," said senior author Dr. Balázs Rada, assistant professor of infectious diseases at the University of Georgia. "It is the most powerful branch of the immune system to fight P. aeruginosa, and our study shows how the bacteria and neutrophils interact. It is a step along the way to direct research attention toward bacterial motility. It is an important feature of the bacterium that has been neglected in the past."

Related Links:
University of Georgia

Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more