We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel 3D Printing Technique Installs NIV Sensors in Lab-on-a Chip Devices

By LabMedica International staff writers
Posted on 04 Nov 2016
Print article
Image: The heart-on-a-chip is made entirely using multi-material three-dimensional printing (3D) in a single automated procedure, integrating six custom printing inks at micrometer resolution (Photo courtesy of Johan Lind, Disease Biophysics Group, and Lori K. Sanders, Lewis Laboratory, Harvard University).
Image: The heart-on-a-chip is made entirely using multi-material three-dimensional printing (3D) in a single automated procedure, integrating six custom printing inks at micrometer resolution (Photo courtesy of Johan Lind, Disease Biophysics Group, and Lori K. Sanders, Lewis Laboratory, Harvard University).
A team of biomedical engineers developed an advanced three-dimensional (3D) printing technique to embed noninvasive strain sensors into living tissue as an integral component of organ-on-a-chip devices.

Microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative to the use of animals in biomedical investigations. However, current MPS typically lack integrated sensors and their fabrication requires complex and expensive multi-step lithographic processes.

Investigators at Harvard University (Cambridge, MA, USA) recently described a method for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Specifically, they designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enabled integration of soft strain gauge sensors within micro-architectures that guided the self-assembly of laminar cardiac tissues.

As described in the October 24, 2016, online edition of the journal Nature Materials, the chips contained multiple wells, each with separate tissues and integrated sensors, allowing investigators to study many engineered cardiac tissues at once.

The investigators validated that the embedded sensors provided non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. They further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.

"Our microfabrication approach opens new avenues for in vitro tissue engineering, toxicology, and drug screening research," said senior author Dr. Kit Parker, professor of bioengineering and applied physics at Harvard University. "Translating microphysiological devices into truly valuable platforms for studying human health and disease requires that we address both data acquisition and manufacturing of our devices. This work offers new potential solutions to both of these central challenges."

Related Links:
Harvard University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
ACTH Assay
ACTH ELISA
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.