LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Active SPARCL1 Slows Growth and Spread of Colorectal Cancer

By LabMedica International staff writers
Posted on 26 Oct 2016
Image: Invasive adenocarcinoma (the most common type of colorectal cancer). The cancerous cells are seen in the center and at the bottom right of the image (blue). Near normal colon-lining cells are seen at the top right of the image (Photo courtesy of Wikimedia Commons).
Image: Invasive adenocarcinoma (the most common type of colorectal cancer). The cancerous cells are seen in the center and at the bottom right of the image (blue). Near normal colon-lining cells are seen at the top right of the image (Photo courtesy of Wikimedia Commons).
Cancer researchers have found that the protein SPARCL1 (secreted protein acidic and rich in cysteine like-1) stabilizes mature blood vessels in healthy intestinal tissue, thus preventing the formation of new blood vessels and inhibiting the growth and spread of colorectal cancer.

Different tumor microenvironments (TMEs) induce stromal cell plasticity that affects tumorigenesis. The impact of TME-dependent heterogeneity of tumor endothelial cells (TECs) on tumorigenesis is unclear. In order to study this important feature of tumorigenesis, investigators at the University of Erlangen-Nuremberg (Germany) isolated pure TECs (tumor endothelial cells) from human colorectal carcinomas (CRCs) that exhibited either improved or worse clinical prognosis.

Transcriptome analyses identified markedly different gene clusters that reflected the tumorigenic and angiogenic activities of the respective TMEs. In particular, the gene encoding the matricellular protein SPARCL1 was most strongly upregulated in TECs from tumors with improved prognosis. Matricellular proteins are dynamically expressed non-structural proteins that are present in the extracellular matrix (ECM). Rather than serving as stable structural elements in the ECM, these proteins are rapidly turned over and have regulatory roles. They characteristically contain binding sites for ECM structural proteins and cell surface receptors, and may sequester and modulate activities of specific growth factors.

The investigators reported in the October 10, 2016, online edition of the Journal of Clinical Investigation that when SPARCL1 expression was induced in vitro, it functionally contributed to quiescence by inhibiting proliferation, migration, and sprouting, whereas siRNA-mediated knockdown of this gene increased sprouting. In human colorectal cancer tissues and mouse models, vessels with SPARCL1 expression were larger and more densely covered by mural cells. SPARCL1 secretion from quiescent endothelial cells inhibited mural cell migration, which likely led to stabilized mural cell coverage of mature vessels.

"Previously the assumption was that blood vessels always benefit tumor growth. However, we have shown that blood vessels, if they contain the protein SPARCL1, can also stem tumor growth," said senior author Dr. Michael Stürzl, professor of molecular and experimental surgery at the University of Erlangen-Nuremberg. "The study also shows why tumors in many cases continue to grow despite therapy intended to inhibit blood vessels. In tumors whose blood vessels produce SPARCL1 and which are already adequately supplied with oxygen and nutrients, suppression of the blood vessels could foster tumor growth. It is important to note that the study does not recommend that antiangiogenic therapy not be used, but rather explains why such therapies may not be effective in all patients."

Related Links:
University of Erlangen-Nuremberg

Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Automatic CLIA Analyzer
Shine i9000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more