Mechanism Described for Cytotoxicity Regulation against Influenza A
|
By LabMedica International staff writers Posted on 20 Oct 2016 |

Image: Neutralizing antibodies that bind to specific antigens on the flu virus may aid in the development of a universal influenza vaccine (Photo courtesy of Dr. Matthew Miller, McMaster University).
A new discovery that revealed how neutralizing antibodies bind to specific antigens on the flu virus may aid in the development of a universal influenza vaccine.
In addition to binding and neutralizing antigens, antibodies are also capable of stimulating cellular responses through Fc–Fc receptor interactions. The fragment crystallizable region (Fc region) is the tail region of an antibody that interacts with cell surface receptors called Fc receptors and some proteins of the complement system. The Fc region of all antibodies in a class is the same for each species; they are constant rather than variable.
The type of response stimulated by these interactions is influenced by both the Fc receptor type expressed on the effector cell and the isotype of antibody to which it is bound. However, how antibody specificity influences Fc receptor functions, and how antibodies of different specificities interact to modulate these functions, remain unknown.
Investigators at McMaster University (Hamilton, Canada) used influenza A virus as a model to demonstrate that antibody specificity profoundly influenced the induction of antibody-dependent cell-mediated cytotoxicity by effector cells. They reported in October 3, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that the generation of strain-specific neutralizing antibodies against influenza A virus was known to confer potent protection against homologous infections. The majority of these antibodies bound to the hemagglutinin (HA) head domain and functioned by blocking the receptor-binding site, preventing infection of host cells.
Elicitation of broadly neutralizing antibodies, which target the viruses' conserved HA stalk domain, has become a promising “universal” influenza virus vaccine strategy. The ability of these antibodies to elicit Fc-dependent effector functions has emerged as an important mechanism through which protection is achieved in vivo. However, the way in which Fc-dependent effector functions are regulated by polyclonal influenza virus-binding antibody mixtures in vivo has never been defined.
In the current study, the investigators demonstrated that interactions among viral glycoprotein-binding antibodies of varying specificities regulated the magnitude of antibody-dependent cell-mediated cytotoxicity induction. They showed that the mechanism responsible for this phenotype relied upon competition for binding to HA on the surface of infected cells and virus particles. Non-neutralizing antibodies were poor inducers and did not inhibit antibody-dependent cell-mediated cytotoxicity.
“Our findings show that just having antibodies is not enough. You have to have antibodies that bind to very specific places on the virus,” said senior author Dr. Matthew Miller, assistant professor of biochemistry and biomedical sciences at McMaster University. “Now that we know the places where antibodies have to bind, we can modify our vaccines so that we generate those antibodies in higher numbers. Using this knowledge, what we can now do is specifically design our universal vaccine to generate the most desirable types of antibodies and avoid antibodies that block the functions that we want. In doing that, we can make sure that the vaccine will work in the most effective way possible.”
Related Links:
McMaster University
In addition to binding and neutralizing antigens, antibodies are also capable of stimulating cellular responses through Fc–Fc receptor interactions. The fragment crystallizable region (Fc region) is the tail region of an antibody that interacts with cell surface receptors called Fc receptors and some proteins of the complement system. The Fc region of all antibodies in a class is the same for each species; they are constant rather than variable.
The type of response stimulated by these interactions is influenced by both the Fc receptor type expressed on the effector cell and the isotype of antibody to which it is bound. However, how antibody specificity influences Fc receptor functions, and how antibodies of different specificities interact to modulate these functions, remain unknown.
Investigators at McMaster University (Hamilton, Canada) used influenza A virus as a model to demonstrate that antibody specificity profoundly influenced the induction of antibody-dependent cell-mediated cytotoxicity by effector cells. They reported in October 3, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that the generation of strain-specific neutralizing antibodies against influenza A virus was known to confer potent protection against homologous infections. The majority of these antibodies bound to the hemagglutinin (HA) head domain and functioned by blocking the receptor-binding site, preventing infection of host cells.
Elicitation of broadly neutralizing antibodies, which target the viruses' conserved HA stalk domain, has become a promising “universal” influenza virus vaccine strategy. The ability of these antibodies to elicit Fc-dependent effector functions has emerged as an important mechanism through which protection is achieved in vivo. However, the way in which Fc-dependent effector functions are regulated by polyclonal influenza virus-binding antibody mixtures in vivo has never been defined.
In the current study, the investigators demonstrated that interactions among viral glycoprotein-binding antibodies of varying specificities regulated the magnitude of antibody-dependent cell-mediated cytotoxicity induction. They showed that the mechanism responsible for this phenotype relied upon competition for binding to HA on the surface of infected cells and virus particles. Non-neutralizing antibodies were poor inducers and did not inhibit antibody-dependent cell-mediated cytotoxicity.
“Our findings show that just having antibodies is not enough. You have to have antibodies that bind to very specific places on the virus,” said senior author Dr. Matthew Miller, assistant professor of biochemistry and biomedical sciences at McMaster University. “Now that we know the places where antibodies have to bind, we can modify our vaccines so that we generate those antibodies in higher numbers. Using this knowledge, what we can now do is specifically design our universal vaccine to generate the most desirable types of antibodies and avoid antibodies that block the functions that we want. In doing that, we can make sure that the vaccine will work in the most effective way possible.”
Related Links:
McMaster University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







