LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Light-Activated Nanoparticles Kill Primary Tumors and Distant Metastases

By LabMedica International staff writers
Posted on 27 Sep 2016
Image: Scientists developed nanoparticles for targeted delivery of chemotherapy. When combined with other cancer treatments, it eradicated tumors in rodents in a recent study (Photo courtesy of Dr. Cecil Fox via Wikimedia Commons).
Image: Scientists developed nanoparticles for targeted delivery of chemotherapy. When combined with other cancer treatments, it eradicated tumors in rodents in a recent study (Photo courtesy of Dr. Cecil Fox via Wikimedia Commons).
A novel type of nanoparticle carries two anticancer drugs to attack colorectal cancer while simultaneously recruiting and activating T-cells to fight the tumors.

Advanced colorectal cancer is one of the deadliest cancers, with a five-year survival rate of only 12% for patients with the metastatic disease. Checkpoint blockade therapy, which counters biochemical signals transmitted by the cancer cells to suppress the immune system and prevent recognition by T-cells, is among the most promising immunotherapies for patients with advanced colon cancer, but has not been particularly successful. This is due in part to the lack of T-cells inside well-established tumors and the difficulty in attracting T-cells from other parts of the body to the tumor.

Investigators at the University of Chicago (IL, USA) have developed a method to enhance the effectiveness of checkpoint blockade therapy. They developed a novel type of nanoparticle assembled from zinc and the drug oxaliplatin, an agent in regular use against advanced-stage metastatic colon cancer. The photosensitizing agent pyrolipid, which attacks tumors following light activation, was used to coat the outer layer of the particles. The nanoparticles therefore represented a method for the effective delivery of both chemotherapy and photodynamic therapy (PDT).

The effectiveness of the particles when tested in a mouse model was as evidenced by early calreticulin (CRT) exposure on the cell surface, antitumor vaccination, tumor-specific T-cell response, and an abscopal effect. The abscopal effect is usually described with ionizing radiation and refers to regression of a tumor outside of the irradiated volume. Although the mechanism is unknown, it is thought to be immune modulated.

The investigators reported in the August 17, 2016, online edition of the journal Nature Communications that in a mouse model nanoparticle treatment in combination with PD-L1 checkpoint blockade, therapy not only led to the regression of the primary tumors treated locally with light irradiation, but also mediated regression of non-irradiated distant tumors by inducing a strong tumor-specific immune response.

“Everybody out there working in the cancer space is trying to figure out ways to enhance checkpoint blockade immunotherapy,” said senior author Dr. Wenbin Lin, professor of chemistry at the University of Chicago. “In this work, we were able to achieve that. We believe that this combination is able to activate the immune system to generate the T-cells that will recognize the cancer cells. Then they go around the body and kill the cancer cells in the distant site that has not been irradiated with the light.”

Related Links:
University of Chicago

Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more