LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanofluidic Diffraction Grating Technique for DNA Amplification May Replace PCR

By LabMedica International staff writers
Posted on 21 Sep 2016
Image: A photo and a schematic illustration for a nanofluidic diffraction grating. Label-free signals based on a diffraction intensity change were attributed to amplification of DNA molecules, such as human papillomavirus and tubercle bacilli (Photo courtesy of Takao Yasui, Nagoya University).
Image: A photo and a schematic illustration for a nanofluidic diffraction grating. Label-free signals based on a diffraction intensity change were attributed to amplification of DNA molecules, such as human papillomavirus and tubercle bacilli (Photo courtesy of Takao Yasui, Nagoya University).
A team of Japanese biophysicists suggests replacing the RT-PCR (real time polymerase chain reaction) technique with a rapid label-free detection method for real-time DNA amplification using a nanofluidic diffraction grating.

Investigators at Nagoya University (Japan) based their strategy for quantifying DNA amplification in a label-free manner on observations of intensity changes of diffracted light derived from the passage of a laser beam through nanochannels embedded in a microchannel; the ability to diffract the beam is a basic characteristic of nanochannels.

In practice, they fabricated 2.7 micron deep, 200 nanometer wide periodic nanochannels embedded in microchannels, which were etched on fused silica substrates by electron beam lithography, photolithography, and plasma etching. For an incident laser beam they used a modulated 532 nanometer laser to amplify a specific component extracted from random or background noise.

They investigators reported in the August 17, 2016, online edition of the journal Scientific Reports that numerical simulations revealed that the diffracted light intensity change in the nanofluidic diffraction grating was attributed to the change of refractive index. Using the technique, they demonstrated the first case reported to date for label-free detection of real-time DNA amplification, such as specific DNA sequences from tubercle bacilli (TB) and human papillomavirus (HPV). Since the system allowed quantification of the initial concentration of amplified DNA molecules ranging from one femtomolar to one picomolar, the investigators expect that it will offer a new strategy for developing fundamental techniques of medical applications.

"Our system also measures DNA amplification at the relatively low temperature of 34 degrees Celsius and without the need for thermal cycles," said contributing author Dr. Noritada Kaji, associate professor of engineering at Nagoya University. "Because it has the potential to be constructed as a single chip and can detect sample volumes as small as one microliter, which is 100-1,000 times less than conventional detectors are capable of, it is particularly suited to development as a miniaturized form of diagnostics and microbe detection."

Related Links:
Nagoya University

Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Gold Member
Hybrid Pipette
SWITCH

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more