LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Bile Enables Norovirus to Grow in Laboratory Cell Cultures

By LabMedica International staff writers
Posted on 07 Sep 2016
Image: Human norovirus particles released into the supernatant of infected cell cultures were detected with electron microscopy (Photo courtesy of the Estes Laboratory, Baylor College of Medicine).
Image: Human norovirus particles released into the supernatant of infected cell cultures were detected with electron microscopy (Photo courtesy of the Estes Laboratory, Baylor College of Medicine).
Bile proved to be the key to the first successful growth of norovirus in laboratory cell cultures.

Noroviruses (NoVs) are a leading cause of gastroenteritis globally, yet the host factors required for NoV infection are poorly understood. Human norovirus will not infect any of the species typically used in biomedical research, such as mice, rats, or rabbits nor will it grow in human cell cultures.

After the failure of many previous attempts to cultivate norovirus in cell cultures, investigators at Baylor College of Medicine (Houston, TX, USA) turned to a recently developed human intestinal epithelial cell culture system that included enterocytes. These novel, multi-cellular human cultures, called enteroids, were made from adult intestinal stem cells from patient tissues.

The investigators reported in the August 25, 2016, online edition of the journal Science that novel cell culture system not withstanding, the method was not impressively successful until they added bile, a critical factor of the intestinal milieu. With the addition of bile, the culture system recapitulated the human intestinal epithelium, permitting human host-pathogen studies of previously non-cultivatable pathogens, and allowed the assessment of methods to prevent and treat human NoV infections.

"When we added bile to the cultures, norovirus strains that did not grow before now grew in large numbers," said senior author Dr. Mary Estes, professor of human and molecular virology and microbiology at Baylor College of Medicine. "People have been trying to grow norovirus in the lab for a very long time. We tried for the last 20 years. Despite all the attempts and the success of growing other viruses, it remained a mystery why noroviruses were so hard to work with. We were able to grow norovirus in cultures that mimic the intestinal environment, where the virus naturally grows, by adding bile to the cultures. Bile is critical for several important bacterial pathogens, but this is the first time it has been shown that bile is important for the replication of human intestinal viruses."

Related Links:
Baylor College of Medicine


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Alcohol Testing Device
Dräger Alcotest 7000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more