LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Expression of Stem Cell Gene Restores Contractile Function to Aged Muscle Cells

By LabMedica International staff writers
Posted on 08 Aug 2016
Image: From left to right, functioning stem cells, stem cells no longer functioning due to Hutchinson-Gilford Progeria syndrome (HGPS), and stem cells previously not functioning due to HGPS that were rebooted by the embryonic stem cell gene NANOG (Photo courtesy of Stelios Andreadis, University at Buffalo).
Image: From left to right, functioning stem cells, stem cells no longer functioning due to Hutchinson-Gilford Progeria syndrome (HGPS), and stem cells previously not functioning due to HGPS that were rebooted by the embryonic stem cell gene NANOG (Photo courtesy of Stelios Andreadis, University at Buffalo).
Transplanting a stem cell gene into aged muscle cells reversed many indicators of cellular senescence and completely restored the cells' ability to generate contractile force.

Cellular senescence as a result of aging or progeroid diseases, such as Hutchinson-Gilford progeria syndrome, leads to stem cell pool exhaustion that hinders tissue regeneration and contributes to the progression of age related disorders. Furthermore, the ability of adult stem cells to form muscle and generate force declines with aging.

Investigators at the University at Buffalo (NY, USA) examined the possibility of reversing the aging process by transplanting the NANOG gene into aged muscle cells. NANOG is a transcription factor in embryonic stem cells (ESCs) that is thought to be a key factor in maintaining pluripotency.

The investigators inserted NANOG into cells from three different models of aging: cells isolated from aged donors, cells aged in culture, and cells isolated from patients with Hutchinson-Gilford progeria syndrome. They reported in the July 11, 2016, online edition of the journal Stem Cells that expression of NANOG in senescent or progeroid muscle progenitor cells reversed cellular aging and restored completely the ability to generate contractile force.

NANOG worked this magic by enabling reactivation of the Rho-associated protein kinase (ROCK) and transforming growth factor (TGF)-beta pathways - both of which were impaired in senescent cells. Reactivation of these pathways stimulated dormant proteins (actin) to generate cytoskeletons that adult stem cells need to form contractile muscle cells and activated the central regulator of muscle formation, serum response factor (SRF).

"Our research into Nanog is helping us to better understand the process of aging and ultimately how to reverse it," said senior author Dr. Stelios T. Andreadis, professor of chemical and biological engineering at the University at Buffalo. "Not only does Nanog have the capacity to delay aging, it has the potential in some cases to reverse it."

Related Links:
University at Buffalo


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Capillary Blood Collection Tube
IMPROMINI M3

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more