LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Molecular Test Detects Three Arboviruses in Plasma Samples

By LabMedica International staff writers
Posted on 04 Aug 2016
Image: A digitally colorized transmission electron micrograph (TEM) of Zika virus. Viral particles are 40 nm in diameter with an outer envelope and dense inner core (Photo courtesy of Cynthia Goldsmith / CDC).
Image: A digitally colorized transmission electron micrograph (TEM) of Zika virus. Viral particles are 40 nm in diameter with an outer envelope and dense inner core (Photo courtesy of Cynthia Goldsmith / CDC).
Currently, multiple arboviruses are circulating in Brazil: Zika, chikungunya and dengue and they have similar clinical pictures, which can lead to misdiagnosis based on clinical grounds alone.

Detection tests for viral ribonucleic acid (RNA) such as the quantitative reverse transcription polymerase chain reaction (RT-qPCR) can reliably and specifically distinguish the three viruses and the specific diagnosis can be important in anticipating, preventing, and managing complications.

Scientists at the Laboratório Sabin (Brasília, Brazil) and their colleagues collected 90 plasma samples from the routine arbovirus laboratory, 20 positive for Zika (RT-qPCR), six positive for chikungunya (RT-qPCR), 18 positive for dengue nonstructural protein 1 antigen test (NS-1) and 46 negative for all three viruses. Nucleic acids were extracted from 1mL of sample by using an automated DNA extractor. An in-vitro transcribed random RNA sequence, which is not found in the nature, was spiked into plasmas during the nucleic acids extraction to function as a process control. Primers/probes for chikungunya were specifically designed for this study.

Zika, chikungunya and dengue viruses were assessed simultaneously by RT-qPCR, but in independent reaction wells. The control RNA was co-amplified in all instances. The viral loads of specific samples were quantified against a serial dilution of synthetic single-stranded DNA (ssDNA) and the limits of detection of each assay were determined by probit regression analysis. To investigate the precision of the assays, three samples at ~72, ~7.2 and ~0.72 copies/mL of each viruses were evaluated by using the Clinical and Laboratory Standards Institute (CLSI) EP12-A2 method during five days in quadruplicate by two operators.

The investigators reported that the limits of detection were 26 copies/mL for Zika, 23.5 copies/mL, for chikungunya and 25.6 copies/mL for dengue. The ~72, ~7.2 and ~0.72 copies/mL samples yielded 18/20 (90%), 2/20 (10%) and 1/20 (5%) positive results for Zika, 18/20 (90%), 4/20 (20%) and 0/20 (0%) positive results for chikungunya and 20/20 (100%), 16/20 (80%) and 0/20 (0%) positive results for dengue, respectively. The total, positive and negative agreements between compared methods were 95.5%, 90% and 97.5 for Zika, 100% for all methods for chikungunya and 95.6%, 100% and 94.5%, for dengue, respectively. No cross-reaction was observed.

The authors concluded that the RT-PCR method for simultaneous detection of Zika, chikungunya and dengue viruses is highly sensitive, all assays showed limit of detection below 50 copies/mL. Moreover, cut-off regions were characterized and acceptable precisions were observed for positive (~72 copies/mL and above) and negative (~0.72 copies/mL and below) results. Finally, the agreements with the comparative methods were very good, above 90% of concordance in all instances. The study was presented at the 68th American Association of Clinical Chemistry (AACC) Annual Scientific Meeting held July 31 to August 4, 2016, in Philadelphia, PA, USA.

Related Links:
Laboratório Sabin
American Association of Clinical Chemistry
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Gold Member
Hybrid Pipette
SWITCH

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more