LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Loss-of-Function Mutation Causes ALS in Mouse Model

By LabMedica International staff writers
Posted on 25 Jul 2016
Image: In the mouse spleen, lymphoid tissue (purple) is responsible for launching an immune response to blood-born antigens, while red pulp (pink) filters the blood. Mutations in the C9ORF72 gene, the most common mutation found in ALS patients, can inflame lymphoid tissue and contribute to immune system dysfunction (Photo courtesy of Dr. Dan Mordes, Eggan Laboratory, Harvard Stem Cell Institute).
Image: In the mouse spleen, lymphoid tissue (purple) is responsible for launching an immune response to blood-born antigens, while red pulp (pink) filters the blood. Mutations in the C9ORF72 gene, the most common mutation found in ALS patients, can inflame lymphoid tissue and contribute to immune system dysfunction (Photo courtesy of Dr. Dan Mordes, Eggan Laboratory, Harvard Stem Cell Institute).
Neurological disease researchers working with a mouse model of amyotrophic lateral sclerosis (ALS) have shown that the condition is critically linked to a loss-of-function mutation in the C9ORF72 (chromosome 9 open reading frame 72) gene.

C9ORF72 mutations have been found in a significant fraction of patients suffering from ALS and frontotemporal dementia (FTD), yet the function of the C9ORF72 gene product remains poorly understood.

In a study published in the July 14, 2016, online edition of the journal Science Translational Medicine investigators at Harvard University (Cambridge, MA, USA) and the Massachusetts Institute of Technology (Cambridge, MA, USA) described results of experiments performed with an ALS mouse model.

They reported that mice carrying loss-of-function mutations in C9ORF72 developed splenomegaly, neutrophilia, thrombocytopenia, increased expression of inflammatory cytokines, and severe autoimmunity, ultimately leading to a high mortality rate. Transplantation of mutant mouse bone marrow into wild-type recipients was sufficient to create the phenotypes observed in the mutant animals, including autoimmunity and premature mortality. Reciprocally, transplantation of wild-type mouse bone marrow into mutant mice improved their phenotype.

Knockout mice – genetically engineered to lack the C9ORF72 gene – that received a bone marrow transplant from normal animals lived on average 43 days longer, weighed more, and had a greater number of blood platelets throughout their lifespan than did untreated knockout mice.

"The point of our paper was to determine the function of this gene and what it normally helps to do in the body," said senior author Dr. Kevin Eggan, professor of stem cell and regenerative biology at Harvard University. "The mice seemed to get better, but the bone marrow transplant did not wholly rescue the animals, suggesting that there may also be functions of C9ORF72 in other organs."

Related Links:
Harvard University
Massachusetts Institute of Technology

Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
Gold Member
Immunochromatographic Assay
CRYPTO Cassette

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more