LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

In Vitro Three-Dimensional Culture System Enhances Prostate Cancer Cell Growth

By LabMedica International staff writers
Posted on 07 Jul 2016
Image: A scanning electron microscope (SEM) micrograph of prostate cancer cells (green) growing in a superporous cryogel with tissue-like elasticity (Photo courtesy of Dr. Bettina Göppert, Karlsruhe Institute of Technology).
Image: A scanning electron microscope (SEM) micrograph of prostate cancer cells (green) growing in a superporous cryogel with tissue-like elasticity (Photo courtesy of Dr. Bettina Göppert, Karlsruhe Institute of Technology).
A team of cancer researchers developed a three-dimensional in vitro culture system for growing prostate cancer cells in an environment that closely mimics the in vivo tumor microenvironment.

The physical and mechanical properties of the tumor microenvironment are crucial for the growth, differentiation, and migration of cancer cells. However, such a microenvironment is not reproduced in vitro due to the geometric constraints of the classic two-dimensional cell culture systems used in many cancer studies. Prostate cancer research, in particular, suffers from the lack of suitable in vitro models.

To correct this deficiency, investigators at the Karlsruhe Institute of Technology (Eggenstein-Leopoldshafen, Germany) generated a three-dimensional in vitro growth system based on a superporous scaffold prepared by cryogelation of poly(ethylene glycol) diacrylate. The resulting structure was a defined elastic matrix for prostate tumor growth with mechanical properties that were very similar to those of natural cell tissue.

The investigators reported in the May 30, 2016, online edition of the journal Small that lymph node carcinoma of the prostate (LNCaP) cells showed a linear growth over 21 days as multicellular tumor spheroids in such a scaffold with points of attachments to the walls of the scaffold. These LNCaP cells responded to the growth promoting effects of androgens and demonstrated a characteristic cytoplasmic-nuclear translocation of the androgen receptor and androgen-dependent gene expression.

Compared to two-dimensional cell culture, the expression or androgen response of prostate cancer specific genes was greatly enhanced in the LNCaP cells grown in the three-dimensional system.

"The paper covers the implementation of the model and shows that it is a long-term stable tissue-like three-dimensional cell culture system, with the help of which hormone-independent prostate-specific gene expression could not only be achieved, but even be reinforced compared to conventional two-dimensional models," said contributing author Dr. Friederike J. Gruhl, a researcher in the Institute of Microstructure Technology at the Karlsruhe Institute of Technology. "This was shown by the cultivation of androgen-sensitive prostate cancer cells (LNCaP). In future, it may be possible to cultivate both healthy cells of the prostate tissue and cancer cells in the three-dimensional cryogel model. This opens up new opportunities for preclinical research and for using it in the clinical development of anti-prostate cancer drugs."

Related Links:
Karlsruhe Institute of Technology

Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
Sample Transportation System
Tempus1800 Necto

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more