LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blocking MicroRNA Synthesis Reverses Behavior of Tumor-Associated Macrophages

By LabMedica International staff writers
Posted on 22 Jun 2016
Image: A micrograph showing immune cells (green) attacking tumor cells (red) (Photo courtesy of Dr. Michele De Palma, Ecole Polytechnique Fédérale de Lausanne).
Image: A micrograph showing immune cells (green) attacking tumor cells (red) (Photo courtesy of Dr. Michele De Palma, Ecole Polytechnique Fédérale de Lausanne).
Preventing synthesis of microRNAs in compromised tumor associated macrophages (TAMs) reprograms these cells from being tumor supporting to being tumor suppressing.

TAMs largely express an alternatively activated (or M2) phenotype, which entails immunosuppressive and tumor-promoting capabilities. Reprogramming TAMs towards a classically activated (M1) phenotype might reverse tumor-associated immunosuppression and activate anti-tumor immunity.

To test this possibility, investigators at Ecole Polytechnique Fédérale de Lausanne (Switzerland) used genetic engineering techniques to conditionally delete the microRNA (miRNA)-processing enzyme DICER1 in macrophages. The enzyme Dicer, which is encoded by the DICER1 gene, trims double stranded RNA, to form small interfering RNA (siRNA) or microRNA (miRNA). These processed RNAs are incorporated into the RNA-induced silencing complex (RISC), which targets messenger RNA to prevent translation.

The investigators reported in the June 13, 2016, online edition of the journal Nature Cell Biology that deletion of DICER1 prompted M1-like TAM programming, characterized by hyperactive IFN (interferon)-gamma/STAT1 (signal transducer and activator of transcription 1) signaling. This behavior modification eliminated the immunosuppressive capacity of TAMs and fostered the recruitment of activated cytotoxic T lymphocytes (CTLs) to the tumors. CTL-derived IFN-gamma increased the M1 polarization of DICER1-deficient TAMs and inhibited tumor growth.

Genetic rescue of Let-7 miRNA activity in DICER1-deficient TAMs partly restored their M2-like phenotype and decreased tumor-infiltrating CTLs. These findings suggested that DICER1/Let-7 microRNA activity opposed IFN-gamma-induced, immunostimulatory M1-like TAM activation.

"The most exciting finding was that TAM reprogramming greatly improved the efficacy of immunotherapy," said senior author Dr. Michele De Palma, a tenure track assistant professor at the Ecole Polytechnique Fédérale de Lausanne. "Our results in experimental models of cancer suggest a new therapeutic strategy based on inhibiting the microRNA machinery - or the Let-7 microRNAs - specifically in the TAMs, which may unleash the power of mainstream immunotherapies, such as immune checkpoint inhibitors."

Related Links:
Ecole Polytechnique Fédérale de Lausanne

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Homocysteine Quality Control
Liquichek Homocysteine Control

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more