LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Study Shows HOXA5 Impedes Breast Cancer Tumor Initiation and Progression

By LabMedica International staff writers
Posted on 07 Jun 2016
Image: A human breast cell lacking HOXA5 (right) shows protruding structures similar to tumor cells, compared with a normal human breast cell (left) (Photo courtesy of Dr. Sara Sukumar, Johns Hopkins University).
Image: A human breast cell lacking HOXA5 (right) shows protruding structures similar to tumor cells, compared with a normal human breast cell (left) (Photo courtesy of Dr. Sara Sukumar, Johns Hopkins University).
A team of cancer researchers has discovered that the HOXA5 (Homeobox protein Hox-A5) gene, which is not found in many breast cancers, acts as a tumor suppressor by regulating E-cadherin and CD24.

Loss of HOXA5 expression occurs frequently in breast cancer and correlates with higher pathological grade and poorer disease outcome. However, how HOX proteins drive differentiation in mammalian cells is poorly understood.

In order to better understand how HOXA5 works, investigators at Johns Hopkins University (Baltimore, MD, USA) evaluated the cellular and molecular consequences of the loss of HOXA5 in breast cancer development and growth.

They reported in the May 9, 2016, online edition of the journal Oncogene that analysis of global gene expression data from HOXA5-depleted MCF10A breast epithelial cells pointed to a role for HOXA5 in maintaining several molecular traits typical of the epithelial lineage such as cell-cell adhesion, tight junctions, and markers of differentiation. Depleting HOXA5 in immortalized MCF10A or transformed MCF10A-Kras breast cancer cells enhanced their self-renewal capacity and reduced expression of E-cadherin and CD24.

Cadherins (named for “calcium-dependent adhesion”) are a class of type-I transmembrane proteins. They play important roles in cell adhesion, ensuring that cells within tissues are bound together. Loss of E-cadherin function or expression has been implicated in cancer progression and metastasis. E-cadherin downregulation decreases the strength of cellular adhesion within a tissue, resulting in an increase in cellular motility. This in turn may allow cancer cells to cross the basement membrane and invade surrounding tissues.

The CD24 cell adhesion molecule is a glycoprotein expressed at the surface of most B-lymphocytes and differentiating neuroblasts. This gene encodes a sialoglycoprotein that is expressed on mature granulocytes and in many B-cells. The encoded protein is anchored via a glycosyl phosphatidylinositol (GPI) link to the cell surface.

Depletion of HOXA5 in mammary cells was found to lead to loss of epithelial traits, an increase in stem cell-like characteristics and cell plasticity, and the acquisition of more aggressive phenotypes.

“Learning more about the biological impact of the HOXA5 protein, which is absent so frequently in breast cancers, may eventually help scientists develop new therapies to treat this disease,” said senior author Dr. Saraswati Sukumar, professor of oncology and pathology at Johns Hopkins University. “HOXA5 regulates the production of two other proteins: CD24 and E-cadherin. Without CD24, the cells begin to revert toward a stem-like state, and without E-cadherin, cells lose some of the “glue” that binds them to other cells.”

Related Links:
Johns Hopkins University

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Capillary Blood Collection Tube
IMPROMINI M3

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more