LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Multiple Myeloma Mouse Model Should Advance Drug Development Efforts

By LabMedica International staff writers
Posted on 18 May 2016
Image: A photomicrograph showing multiple myeloma cells in the bone marrow (Photo courtesy of the University of Miami School of Medicine).
Image: A photomicrograph showing multiple myeloma cells in the bone marrow (Photo courtesy of the University of Miami School of Medicine).
A recently developed multiple myeloma mouse model is expected to aid in understanding the pathology of the disease and serve as a platform for preclinical testing of potential therapeutic agents.

Investigators at the University of Miami School of Medicine (FL, USA) created the model by crossing two lines of genetically engineered mice. The first line (Mef−/−) lacked the gene for the transcription factor Mef (Elf4), which is known to both promote and suppress the formation of cancers. The second line (Rad50s) contained a mutation in a component of a sensor of DNA damage and regulator of DNA damage response pathways.

The investigators reported in the March 10, 2016, online edition of the journal Scientific Reports that about 70% of the hybrid Mef−/−Rad50s/s mice died from multiple myeloma or other plasma cell cancers.

These mice initially showed an abnormal plasma cell proliferation and monoclonal protein production, and then developed anemia and a decreased bone mineral density. Tumor cells could be serially transplanted. Genome mapping and whole exome sequencing revealed that the pathogenesis of plasma cell cancers in these mice was not linked to activation of a specific oncogene, or inactivation of a specific tumor suppressor (except Mef).

"Multiple myeloma is the second most common hematologic malignancy in the U.S. and it is a very complex disease," said senior author Dr. Stephen D. Nimer, professor of medicine, biochemistry, and molecular biology at the University of Miami School of Medicine. "So far, there have not been animal models of malignant plasma-cell diseases that allow us to study their stepwise progression and fully understand the complex cellular mechanisms. Now that we have a proper model of the disease, we will be able to more effectively study multiple myeloma as well as potential treatments."

"Although outcomes for multiple myeloma patients have greatly improved, it remains an incurable disease, despite the availability of newer treatments," said Dr. Nimer. "Several animal models of multiple myeloma have been reported, including models of human myeloma cells. However, these models imperfectly mimic the human disease. Developing more-reliable and accurate animal models that help us better understand myeloma and test new treatments will take us to the next level on the long and challenging road to a cure."

Related Links:
University of Miami School of Medicine


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Capillary Blood Collection Tube
IMPROMINI M3

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more