LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Stem Cells Derived from Older Individuals May Carry Unsafe Mitochondrial DNA Mutations

By LabMedica International staff writers
Posted on 29 Apr 2016
Image: A confocal microscopy image of human fibroblasts derived from embryonic stem cells. The nuclei appear in blue, while smaller and more numerous mitochondria appear in red (Photo courtesy of Dr. Shoukhrat Mitalipov, Oregon Health & Science University).
Image: A confocal microscopy image of human fibroblasts derived from embryonic stem cells. The nuclei appear in blue, while smaller and more numerous mitochondria appear in red (Photo courtesy of Dr. Shoukhrat Mitalipov, Oregon Health & Science University).
Induced pluripotent stem cells (iPSCs) derived from the skin fibroblasts of older individuals have a likelihood of harboring mitochondrial DNA mutations, which may render them unfit for clinical applications.

Logically, one would expect tissues from elderly individuals to be more likely to carry unfavorable mutations. However, when investigators at Oregon Health & Science University (Portland, USA) and their colleagues at Cincinnati Children's Hospital (Ohio, USA) examined the accumulation of somatic mitochondrial genome (mtDNA) mutations in skin fibroblasts, blood, and iPSCs derived from young and elderly subjects (24–72 years), they found that pooled skin and blood mtDNA contained few point mutations.

In contrast, a panel of 10 individual iPSC lines from each tissue or clonally expanded fibroblasts carried an elevated load of heteroplasmic or homoplasmic mutations, particularly in patients over 60. This finding implied that somatic mutations randomly arose within individual cells but were not detectable in whole tissues.

Further findings published in the April 14, 2016, online edition of the journal Cell Stem Cell revealed that the frequency of mtDNA defects in iPSCs increased with age, and that many mutations resided in RNA coding genes and thus could lead to respiratory defects. These results highlighted a need to monitor mtDNA mutations in iPSCs, especially those generated from older patients, and to examine the metabolic status of iPSCs destined for clinical applications.

"We call it the freckled effect," said contributing author Dr. Taosheng Huang, director of the mitochondrial medicine program at Cincinnati Children's Hospital. "Every single cell can be different. Two cells next to each other could have different mutations or different percentages of mutations. People tend to look just at the nuclear genome, but if you want to use iPS cells in a human, you must check for mutations in the mitochondrial genome."

Related Links:
Oregon Health & Science University
Cincinnati Children's Hospital
Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Human Estradiol Assay
Human Estradiol CLIA Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more