Programming Language Simplifies Design of Biological Circuits
|
By LabMedica International staff writers Posted on 05 Apr 2016 |

Image: Using E. coli bacteria as the initial organism for development, bioengineers have devised a programming language that simplifies the process of designing and incorporating synthetic gene elements to provide living cells with new functions (Photo courtesy of Janet Iwasa and MIT).
Bioengineers have created a programming language that allows to rapidly design complex DNA-encoded circuits that provide new functions to living cells. In a first application, genetic circuits generated on plasmids expressed in Escherichia coli bacteria successfully regulated cellular functions in response to multiple environmental signals.
The word was led by researchers at Massachusetts Institute of Technology (Cambridge, MA, USA) in collaboration with researchers at Boston University (Boston, MA, USA) and National Institute of Standards and Technology (Gaithersburg, MD, USA). They applied principles from electronic design automation (EDA) to simplify the process of incorporating synthetic gene regulation into cells and to enable increased circuit complexity.
“It is literally a programming language for bacteria,” says Christopher Voigt, professor, MIT, “You use a text-based language, just like you’re programming a computer. Then you take that text and you compile it and it turns it into a DNA sequence that you put into the cell, and the circuit runs inside the cell.”
Over the past 15 years, scientists have designed many genetic parts (e.g., sensors, memory switches, biological clocks) that can be combined to modify existing cell functions and add new ones. However, designing each circuit is a laborious process that requires expertise and often much trial and error. “You have to have this really intimate knowledge of how those pieces are going to work,” said Prof. Voigt. Users of the new programming language, however, need no special knowledge of genetic engineering. “You could be completely naive as to how any of it works. That’s what’s really different about this,” he said, “You could be a student in high school and go onto the Web-based server and type out the program you want, and it spits back the DNA sequence.”
The language is based on the hardware description language Verilog commonly used to program computer chips. To create a version that would work for cells, the researchers designed computing elements (such as logic gates and sensors) that can be encoded in DNA. The sensors can detect different compounds, such as oxygen or glucose, as well as light, temperature, acidity, and other environmental conditions. Users can also add their own sensors. “It’s very customizable,” said Prof. Voigt.
Another advantage of this technique is its speed. Until now, “it would take years to build these types of circuits. Now you just hit the button and immediately get a DNA sequence to test,” said Prof. Voigt. This approach simplifies incorporation of genetic circuits for decision-making, control, sensing, or spatial organization. The user specifies the desired circuit function in Verilog code, and this is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance.
In the study, out of 60 circuits programmed for different functions, 45 worked correctly the first time tested. Many of the circuits were designed to measure and respond to one or more environmental conditions, such as oxygen level or glucose concentration. Another circuit was designed to rank three different inputs and then respond based on the priority of each.
In the current version, the genetic parts are optimized for E. coli. The researchers are expanding the language for other strains of bacteria, as well as the yeast Saccharomyces cerevisiae. This would allow users to write a single program and then compile it for different organisms to get the right DNA sequence for each.
The team plans to develop applications such as bacteria that can be swallowed to aid in digestion of lactose; bacteria that can live on plant roots and produce insecticide if they sense the plant is under attack; bacteria that can produce a cancer drug upon detecting a tumor; and yeast cells that can halt their own fermentation process if too many toxic byproducts build up in a reactor.
The study, by Nielsen AAK et al, was published April 1, 2016, in the journal Science.
Related Links:
Massachusetts Institute of Technology
The word was led by researchers at Massachusetts Institute of Technology (Cambridge, MA, USA) in collaboration with researchers at Boston University (Boston, MA, USA) and National Institute of Standards and Technology (Gaithersburg, MD, USA). They applied principles from electronic design automation (EDA) to simplify the process of incorporating synthetic gene regulation into cells and to enable increased circuit complexity.
“It is literally a programming language for bacteria,” says Christopher Voigt, professor, MIT, “You use a text-based language, just like you’re programming a computer. Then you take that text and you compile it and it turns it into a DNA sequence that you put into the cell, and the circuit runs inside the cell.”
Over the past 15 years, scientists have designed many genetic parts (e.g., sensors, memory switches, biological clocks) that can be combined to modify existing cell functions and add new ones. However, designing each circuit is a laborious process that requires expertise and often much trial and error. “You have to have this really intimate knowledge of how those pieces are going to work,” said Prof. Voigt. Users of the new programming language, however, need no special knowledge of genetic engineering. “You could be completely naive as to how any of it works. That’s what’s really different about this,” he said, “You could be a student in high school and go onto the Web-based server and type out the program you want, and it spits back the DNA sequence.”
The language is based on the hardware description language Verilog commonly used to program computer chips. To create a version that would work for cells, the researchers designed computing elements (such as logic gates and sensors) that can be encoded in DNA. The sensors can detect different compounds, such as oxygen or glucose, as well as light, temperature, acidity, and other environmental conditions. Users can also add their own sensors. “It’s very customizable,” said Prof. Voigt.
Another advantage of this technique is its speed. Until now, “it would take years to build these types of circuits. Now you just hit the button and immediately get a DNA sequence to test,” said Prof. Voigt. This approach simplifies incorporation of genetic circuits for decision-making, control, sensing, or spatial organization. The user specifies the desired circuit function in Verilog code, and this is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance.
In the study, out of 60 circuits programmed for different functions, 45 worked correctly the first time tested. Many of the circuits were designed to measure and respond to one or more environmental conditions, such as oxygen level or glucose concentration. Another circuit was designed to rank three different inputs and then respond based on the priority of each.
In the current version, the genetic parts are optimized for E. coli. The researchers are expanding the language for other strains of bacteria, as well as the yeast Saccharomyces cerevisiae. This would allow users to write a single program and then compile it for different organisms to get the right DNA sequence for each.
The team plans to develop applications such as bacteria that can be swallowed to aid in digestion of lactose; bacteria that can live on plant roots and produce insecticide if they sense the plant is under attack; bacteria that can produce a cancer drug upon detecting a tumor; and yeast cells that can halt their own fermentation process if too many toxic byproducts build up in a reactor.
The study, by Nielsen AAK et al, was published April 1, 2016, in the journal Science.
Related Links:
Massachusetts Institute of Technology
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







