LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Innovative DNA Technology May Provide More Efficient Disease Detection and Treatment

By LabMedica International staff writers
Posted on 17 Feb 2016
Researchers have developed a novel DNA aptamer with potential to improve detection and targeted treatment of infectious diseases and other illnesses, such as cancer.

The new aptamer was developed by researchers at the Institute of Bioengineering and Nanotechnology (IBN) of A*STAR (Agency for Science, Technology and Research; Singapore) by improving on existing technologies for synthesizing aptamers, modified single-stranded DNA molecules. DNA aptamers can specifically bind to molecular targets in the body such as proteins, viruses, bacteria, and cells. DNA aptamers are made for a given target to bind and inhibit its activity, giving this technology potential for disease detection and drug delivery. But no DNA aptamers have been approved for clinical use because current aptamers do not bind well to targets and are easily digested by enzymes.

“To overcome these challenges, we have created a DNA aptamer with strong binding ability and stability with superior efficacy. We hope to use our DNA aptamers as the platform technology for diagnostics and new drug development,” said IBN Executive Director Prof. Jackie Y. Ying.

The research team was led by principal research scientist and team leader Dr. Ichiro Hirao. To tackle the weak target-binding problem, they added a new artificial component, an “unnatural base,” to a standard DNA aptamer, which typically has 4 components. The addition of the 5th component greatly enhanced the binding ability to the molecular target by 100 times compared to conventional DNA aptamers. Furthermore, to prevent the aptamer from being quickly digested by enzymes, a unique “mini-hairpin DNA” was added.

Dr. Hirao explained: “The mini-hairpin DNAs have an unusually stable and compact stem-loop structure, like a hairpin, of small DNA fragments. Their structure strongly resists the digestive enzymes, so I added them to specific positions on the DNA aptamer to act as a protective shield. Usually DNAs are digested within one hour in blood at body temperature. With the mini-hairpin DNA, our DNA aptamers can survive for days instead of hours. This is important for pharmaceutical applications, which require the therapeutic to remain in the body for a longer period.”

DNA aptamers could replace or complement the existing use of antibodies in drugs for targeted disease treatment. Antibodies often cause undesirable immune response and are not easy to mass produce with high quality.

“We can now generate very promising DNA aptamers for clinical use. Our aptamers are more efficient, and lower in cost and toxicity compared to conventional methods. The next step of our research is to use the aptamers to detect and deactivate target molecules and cells that cause infectious diseases, such as dengue, malaria, and Methicillin-resistant Staphylococcus aureus (MRSA), as well as cancer,” added Dr Hirao.

The study, by Matsunaga K et al, was published December 22, 2015, in the journal Scientific Reports.

Related Links:

Institute of Bioengineering and Nanotechnology at A*STAR


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Sample Transportation System
Tempus1800 Necto

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more