Novel Copper Therapy Cures ALS Mouse Model
|
By LabMedica International staff writers Posted on 09 Feb 2016 |

Image: Copper, zinc superoxide dismutase (Cu Zn SOD) is essential to life, but when damaged can become toxic (Photo courtesy of Oregon State University).
Selective delivery of copper (Cu) to the central nervous system effectively treats the motor neuron disease amyotrophic lateral sclerosis (ALS) in the most widely used mouse model of the disorder.
ALS is a progressive and fatal neurodegenerative disease caused by the death and deterioration of motor neurons in the spinal cord that is linked to mutations in the enzyme copper, zinc superoxide dismutase (Cu, Zn SOD). Copper helps to stabilize the three-dimensional structure of this antioxidant enzyme, but when it lacks metal co-factors, SOD can unfold and become toxic, leading to the death of motor neurons.
Over-expression of mutant Cu, Zn SOD in mice induces ALS and has become the most widely used model of neurodegeneration. However, no pharmaceutical agent in 20 years has extended lifespan of these animals by more than a few weeks.
The Copper-Chaperone-for-SOD (CCS) protein completes the maturation of SOD by inserting copper, but paradoxically mice that have been genetically engineered to express human CCS while co-expressing mutant SOD die within two weeks of birth.
Hypothesizing that co-expression of CCS created copper deficiency in the spinal cord, investigators at Oregon State University (Corvallis, USA) treated these baby mice with the PET (positron emission tomography)-imaging agent CuATSM (diacetyl-bis(N4-methylthiosemicarbazone)), which is known to deliver copper into the central nervous system within minutes.
The investigators reported in the January 27, 2016, online edition of the journal Neurobiology of Disease that CuATSM prevented the early mortality of the CCSxSOD mice, while markedly increasing the level of Cu, Zn SOD protein in their ventral spinal cords. Remarkably, continued treatment with CuATSM extended the survival of these mice by an average of 18 months. When CuATSM treatment was stopped, these mice developed ALS-related symptoms and died within three months. Restoring CuATSM treatment could rescue these mice after they became symptomatic, providing a means to start and stop disease progression.
All human ALS patients express CCS, raising the hope that familial ALS patients could respond to CuATSM treatment similarly to the CCSxSOD mice.
"We are shocked at how well this treatment can stop the progression of ALS," said senior author Dr. Joseph Beckman, professor of biochemistry and at Oregon State University. "We have a solid understanding of why the treatment works in the mice, and we predict it should work in both familial and possibly sporadic human patients, but we will not know until we try. We want people to understand that we are moving to human trials as quickly as we can. In humans who develop ALS, the average time from onset to death is only three to four years."
Related Links:
Oregon State University
ALS is a progressive and fatal neurodegenerative disease caused by the death and deterioration of motor neurons in the spinal cord that is linked to mutations in the enzyme copper, zinc superoxide dismutase (Cu, Zn SOD). Copper helps to stabilize the three-dimensional structure of this antioxidant enzyme, but when it lacks metal co-factors, SOD can unfold and become toxic, leading to the death of motor neurons.
Over-expression of mutant Cu, Zn SOD in mice induces ALS and has become the most widely used model of neurodegeneration. However, no pharmaceutical agent in 20 years has extended lifespan of these animals by more than a few weeks.
The Copper-Chaperone-for-SOD (CCS) protein completes the maturation of SOD by inserting copper, but paradoxically mice that have been genetically engineered to express human CCS while co-expressing mutant SOD die within two weeks of birth.
Hypothesizing that co-expression of CCS created copper deficiency in the spinal cord, investigators at Oregon State University (Corvallis, USA) treated these baby mice with the PET (positron emission tomography)-imaging agent CuATSM (diacetyl-bis(N4-methylthiosemicarbazone)), which is known to deliver copper into the central nervous system within minutes.
The investigators reported in the January 27, 2016, online edition of the journal Neurobiology of Disease that CuATSM prevented the early mortality of the CCSxSOD mice, while markedly increasing the level of Cu, Zn SOD protein in their ventral spinal cords. Remarkably, continued treatment with CuATSM extended the survival of these mice by an average of 18 months. When CuATSM treatment was stopped, these mice developed ALS-related symptoms and died within three months. Restoring CuATSM treatment could rescue these mice after they became symptomatic, providing a means to start and stop disease progression.
All human ALS patients express CCS, raising the hope that familial ALS patients could respond to CuATSM treatment similarly to the CCSxSOD mice.
"We are shocked at how well this treatment can stop the progression of ALS," said senior author Dr. Joseph Beckman, professor of biochemistry and at Oregon State University. "We have a solid understanding of why the treatment works in the mice, and we predict it should work in both familial and possibly sporadic human patients, but we will not know until we try. We want people to understand that we are moving to human trials as quickly as we can. In humans who develop ALS, the average time from onset to death is only three to four years."
Related Links:
Oregon State University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreMolecular Diagnostics
view channel
AI Tools Detect Early-Stage Cancer Using Simple Blood Test
Early cancer detection remains a major challenge, particularly in low- and middle-income countries, where access to advanced imaging, specialized laboratories, and trained oncologists is limited.... Read more
Sepsis Test Demonstrates Strong Performance in Post-Cardiac Surgery Patients
Sepsis is difficult to diagnose accurately in patients recovering from major surgery, as infection-related symptoms often overlap with non-infectious systemic inflammatory responses. This challenge is... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Deep Learning–Based Method Improves Cancer Diagnosis
Identifying vascular invasion is critical for determining how aggressive a cancer is, yet doing so reliably can be difficult using standard pathology workflows. Conventional methods require multiple chemical... Read more
ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
Urine drug testing plays a critical role in the emergency department, particularly for patients presenting with suspected overdose or altered mental status. Accurate and timely results can directly influence... Read moreTechnology
view channel
Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
Detecting cancer early and tracking how it responds to treatment remains a major challenge, particularly when cancer cells are present in extremely low numbers in the bloodstream. Circulating tumor cells... Read more
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more







