LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Prolonged Cell Division Arrest Prevents Development of Cancers Caused by Epstein-Barr Virus

By LabMedica International staff writers
Posted on 02 Feb 2016
Image: Green fluorescent dyes shown in this micrograph mark the presence of the glucose transporter, GLUT1, on the surface of lymphoblastoid cells which go on to form the lymphomas caused by Epstein-Barr virus. GLUT1 appears here because these cells have been taken over by the virus, which increases demand for more glucose to continue its infectious path (Photo courtesy of Dr. Amy Hafez, Duke University).
Image: Green fluorescent dyes shown in this micrograph mark the presence of the glucose transporter, GLUT1, on the surface of lymphoblastoid cells which go on to form the lymphomas caused by Epstein-Barr virus. GLUT1 appears here because these cells have been taken over by the virus, which increases demand for more glucose to continue its infectious path (Photo courtesy of Dr. Amy Hafez, Duke University).
A mechanism has been identified that helps explain why despite most people having been infected with Epstein-Barr virus (EBV), very few develop the lymphomas and other cancers the virus can cause.

EBV was the first human tumor virus discovered. Although nearly all adults are infected with EBV, very few go on to develop disease, for reasons that are only now beginning to be understood.

Infection with EBV induces a period of very rapid cell division, which requires an increased supply of metabolites, such as nucleotides, amino acids, and lipids. Investigators at Duke University (Durham, NC, USA) found that EBV-infected cells that were unable to meet this increased metabolic demand were forced to stop proliferating and underwent a permanent growth arrest called senescence.

They reported in the January 22, 2016, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that arrested cells had a reduced level of mitochondrial respiration and a decrease in the expression of genes involved in the TCA (Kreb's) cycle and oxidative phosphorylation. Furthermore, the growth arrest in early infected cells could be rescued by supplementing the TCA cycle. Arrested cells were characterized by an increase in the expression of p53 pathway gene targets, including sestrins. Increased sestrin expression led to activation of AMPK (5' AMP-activated protein kinase), a reduction in mTOR (mammalian target of rapamycin) signaling, and, consequently, elevated autophagy that was important for cell survival.

In assessing the metabolic changes from early infection to long-term outgrowth, the investigators found concomitant increases in glucose import and surface glucose transporter 1 (GLUT1) levels, leading to elevated glycolysis, oxidative phosphorylation, and suppression of basal autophagy.

Senior author Dr. Micah Luftig, associate professor of molecular genetics and microbiology at Duke University, said, "For the most part, a healthy immune system stops Epstein-Barr virus from making much headway. In fact, many of the cancers linked to EBV are found mostly in immune-compromised patients whose ability to fight it off has been weakened. But another answer may be this newly discovered senescence trigger."

Related Links:

Duke University 


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Silver Member
PCR Plates
Diamond Shell PCR Plates

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more