LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Secondary Bile Acids in the Large Intestine Inhibit Clostridium difficile Growth

By LabMedica International staff writers
Posted on 17 Jan 2016
Image: Scanning electron micrograph of Clostridium difficile bacteria from a stool sample (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention).
Image: Scanning electron micrograph of Clostridium difficile bacteria from a stool sample (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention).
Secondary bile acids that result from bacterial metabolism in the large intestine inhibit the growth of the pathogenic bacterium Clostridium difficile, but when bile acid levels are disrupted by antibiotic treatment, C. difficile is able to flourish.

Primary bile acids are those synthesized by the liver, while secondary bile acids result from bacterial actions in the colon. So far inhibition of C. difficile growth by secondary bile acids had only been shown in vitro. To understand how this mechanism works in vivo, investigators at North Carolina State University (Raleigh, USA) and the University of Michigan (Ann Arbor, USA) used targeted bile acid metabolomics to determine the physiologically relevant concentrations of primary and secondary bile acids present in the mouse small and large intestinal tracts and how these impacted C. difficile dynamics. Metabolomics is the study of chemical processes involving metabolites, while the metabolome represents the collection of all metabolites in a biological cell, tissue, organ, or organism that are the end products of cellular processes.

The investigators treated mice with a variety of antibiotics to create distinct microbial and metabolic (bile acid) environments and directly tested their ability to support or inhibit C. difficile spore germination and outgrowth.

They reported in the January 6, 2016, online edition of the journal mSphere that susceptibility to C. difficile in the large intestine was observed only after specific broad-spectrum antibiotic treatment (cefoperazone, clindamycin, and vancomycin) and was accompanied by a significant loss of secondary bile acids (deoxycholate, lithocholate, ursodeoxycholate, hyodeoxycholate, and omega-muricholate). These changes were correlated to the loss of specific microbiota community members, the Lachnospiraceae and Ruminococcaceae families.

Additionally, the investigators found that the physiological concentrations of secondary bile acids present in the large intestine during C. difficile resistance were able to inhibit spore germination and outgrowth in vitro. Conditions in the large intestine were different from those in the small intestine, since C. difficile spore germination and outgrowth were supported constantly in the mouse small intestine regardless of antibiotic perturbation.

"We know that within a healthy gut environment, the growth of C. difficile is inhibited," said senior author Dr. Casey Theriot, assistant professor of infectious disease at North Carolina State University. "But we wanted to learn more about the mechanisms behind that inhibitory effect. These findings are a first step in understanding how the gut microbiota regulates bile acids throughout the intestine. Hopefully they will aid the development of future therapies for C. difficile infection and other metabolically relevant disorders such as obesity and diabetes."

Related Links:
North Carolina State University
University of Michigan


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Capillary Blood Collection Tube
IMPROMINI M3

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more