LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Inhaled Viral Capsids Trigger Systemic Antitumor Response in Mouse Model

By LabMedica International staff writers
Posted on 04 Jan 2016
Image: Inhaled or injected into tumors of several types of cancer, the shell of Cowpea mosaic virus with infectious components removed turned on the immune system in mice to wipe out tumors and protect against metastases (Photo courtesy of Wikimedia Commons).
Image: Inhaled or injected into tumors of several types of cancer, the shell of Cowpea mosaic virus with infectious components removed turned on the immune system in mice to wipe out tumors and protect against metastases (Photo courtesy of Wikimedia Commons).
The shells of deactivated Cowpea mosaic virus (CPMV) were found have potent adjuvant activity on cancer growth, which was demonstrated by the ability to block immune system suppression in the tumor microenvironment and subsequently to trigger a full-blown systemic antitumor immune response.

The "in situ vaccination" immunotherapy strategy postulates the direct manipulation of tumors to overcome local tumor-mediated immunosuppression and subsequently stimulate systemic antitumor immunity to treat metastases.

As a test of this strategy, investigators at Dartmouth College (Hanover, NH, USA) and their colleagues at Case Western Reserve University (Cleveland, OH, USA) treated mice with lung melanomas with self-assembling virus-like nanoparticles from CPMV.

CPMV's genetic, biological, and physical properties are well characterized, and it can be isolated readily from plants. There are many stable mutants already prepared that allow specific modification of the capsid surface. It is possible to attach a number of different chemicals to the virus surface and to construct multilayer arrays of such nanoparticles on solid surfaces. This gives the natural or genetically engineered nanoparticles a range of properties which could be useful in nanotechnological applications. Furthermore, CPMV nanoparticles are stable, nontoxic, modifiable with drugs and antigens, and their nanomanufacture is highly scalable.

The investigators reported in the December 21, 2015, online edition of the journal Nature Nanotechnology that inhalation of CPMV nanoparticles by mice reduced the size of established B16F10 lung melanoma tumors and simultaneously generated potent systemic antitumor immunity against poorly immunogenic B16F10 introduced into the skin. Full potency required interleukin-12 (IL-12), (interferon-gamma) IFN-gamma, adaptive immunity, and neutrophils. Inhaled CPMV nanoparticles were rapidly taken up by and activated neutrophils in the tumor microenvironment as an important part of the antitumor immune response.

CPMV also exhibited clear treatment efficacy and systemic antitumor immunity in ovarian, colon, and breast tumor models in multiple anatomic locations.

"The particles are shockingly potent," said senior author Dr. Steven Fiering, professor of microbiology and immunology at Dartmouth College. "They are easy to make and do not need to carry antigens, drugs, or other immunestimulatory agents on their surface or inside. Because everything we do is local, the side effects are limited, and despite the strength and extent of the immune response no toxicity was found."

Related Links:

Dartmouth College
Case Western Reserve University


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
Human Estradiol Assay
Human Estradiol CLIA Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more