LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Monoclonal Antibody Treatment Decreases Severity of Whooping Cough in Animal Models

By LabMedica International staff writers
Posted on 16 Dec 2015
Image: Representation of the molecular structure of pertussis toxin. It is composed of five kinds of subunits. S1: green S2: cyan S3: purple S4: yellow (double) S5: red (Photo courtesy of Wikimedia Commons).
Image: Representation of the molecular structure of pertussis toxin. It is composed of five kinds of subunits. S1: green S2: cyan S3: purple S4: yellow (double) S5: red (Photo courtesy of Wikimedia Commons).
A pair of antibodies directed against pertussis toxin was shown in animal models to increase bacterial clearance and prevent the rise in white blood cell counts associated with poor prognosis in infants.

Despite widespread vaccination, pertussis rates are rising in industrialized countries and remain high worldwide. With no specific drugs to treat the disease, pertussis continues to cause considerable infant morbidity and mortality. The pertussis toxin, a protein-based AB5-type exotoxin, is a major contributor to the disease state, as it is responsible for local and systemic effects including leukocytosis and immunosuppression.

In an effort to develop means to prevent or treat whooping cough, investigators at the University of Texas (Austin, USA) humanized two mouse monoclonal antibodies that neutralized pertussis toxin. The antibodies were then expressed as human immunoglobulin G1 molecules with no loss of affinity or in vitro neutralization activity. The antibodies were subsequently licensed for further development to Synthetic Biologics (Rockville, MD, USA), a clinical-stage company focused on targeting pathogen-specific diseases.

In a preliminary study the antibodies were administered prophylactically to mice as a binary cocktail and therapeutically to pertussis-infected baboons. Results published in the December 2, 2015, online edition of the journal Science Translational Medicine revealed that in mice the antibody treatment completely mitigated the Bordetella pertussis–induced rise in white blood cell counts and decreased bacterial colonization. When administered therapeutically to baboons, antibody-treated, but not untreated control animals, experienced a blunted rise in white blood cell counts and accelerated bacterial clearance rates.

"In the developing world, an estimated 200,000 babies die a year, and that is where we think we can have a really big impact," said senior author Dr. Jennifer Maynard, associate professor of chemical engineering at the University of Texas. "If we can get our antibodies to these high-risk infants, we could potentially prevent the infection from occurring in the first place. We want to make sure that our research is really going to have impact. Most of the babies who get sick have not been immunized, so we hope to provide the immunity that they are lacking."

"We believe the key to preventing death is reducing the white blood cell load, which becomes extremely elevated during infection," said contributing author Dr. Michael Kaleko, senior vice president of research and development at Synthetic Biologics. "If we can bring the count down or keep it low, the sick child may have a much better prognosis."

Related Links
:
University of Texas
Synthetic Biologics


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Human Estradiol Assay
Human Estradiol CLIA Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more