LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Directly Differentiated Neurons Maintain Precursor Cells' Genetic Aging Pattern

By LabMedica International staff writers
Posted on 21 Oct 2015
Image: A new technique enabled growth of aged brain cells from patients’ skin cells. The micrograph shows induced neurons that were directly converted from skin fibroblasts obtained from elderly human donors (Photo courtesy of the Salk Institute for Biological Studies).
Image: A new technique enabled growth of aged brain cells from patients’ skin cells. The micrograph shows induced neurons that were directly converted from skin fibroblasts obtained from elderly human donors (Photo courtesy of the Salk Institute for Biological Studies).
Advanced stem cell techniques allow direct inducement of neurons that maintain the genetic pattern of aging that was present in the precursor skin fibroblasts and which may be used to model age-related neurological diseases.

Investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) generated neurons from skin fibroblasts obtained from 19 human donors aged from birth to 89 years either by iPSC (induced pluripotent stem cell)-based reprogramming and differentiation or by direct conversion into induced neurons (iNs).

Neurons derived by the iPSC method did not retain aging-associated gene signatures. On the other hand, use of non-viral plasmid transfection or protein transduction allowed the generation of induced neural precursor (iNP) colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells gave rise to neurons (iNs) exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrated electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells were capable of differentiating into glial fibrillary acidic protein (GFAP)-expressing astrocytes.

The investigators reported in the October 8, 2015, issue of the journal Cell Stem Cell that while iPSCs and their derived neurons did not retain aging-associated gene signatures, iNs displayed age-specific transcriptional profiles and revealed age-associated decreases in the nuclear transport receptor RanBP17. They detected an age-dependent loss of nucleocytoplasmic compartmentalization (NCC) in donor fibroblasts and corresponding iNs and found that reduced RanBP17 impaired NCC in young cells, while iPSC rejuvenation restored NCC in aged cells.

"The neurons we derived showed differences depending on donor age,” said first author Dr. Jerome Mertens, a postdoctoral researcher at the Salk Institute for Biological Studies. "And they actually show changes in gene expression that have been previously implicated in brain aging. For instance, levels of a nuclear pore protein called RanBP17—whose decline is linked to nuclear transport defects that play a role in neurodegenerative diseases—were lower in the neurons derived from older patients."

Related Links:

Salk Institute for Biological Studies


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Automated MALDI-TOF MS System
EXS 3000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more