We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Molecular Sensors Generated by Synthetic Biology Technique Using Intein-Based Protein Splicing

By LabMedica International staff writers
Posted on 05 Oct 2015
Image: representation of a protein (blue), which contains three zinc fingers in complex with DNA (orange). The coordinating amino acid residues and zinc ions (green) are highlighted (Photo courtesy of Wikimedia Commons).
Image: representation of a protein (blue), which contains three zinc fingers in complex with DNA (orange). The coordinating amino acid residues and zinc ions (green) are highlighted (Photo courtesy of Wikimedia Commons).
Biotech researchers have used intein-based protein splicing to generate synthetic protein components that are able to detect specific DNA sequences and subsequently trigger a desired intracellular response such as activation of a gene or initiation of a molecular pathway.

An intein is a segment of a protein that is able to excise itself and join the remaining portions (the exteins) with a peptide bond in a process termed protein splicing. Intein-mediated protein splicing occurs after the intein-containing mRNA has been translated into a protein. This precursor protein contains three segments — an N-extein followed by the intein followed by a C-extein. After splicing has taken place, the resulting protein contains the N-extein linked to the C-extein; this splicing product is also termed an extein. Pharmaceutical inhibition of intein excision may be a useful tool for drug development; the protein that contains the intein will not carry out its normal function if the intein does not excise, since its structure will be disrupted.

Investigators at the Massachusetts Institute of Technology (Cambridge, USA) exploited the programmability of zinc-finger DNA recognition to drive the intein-mediated splicing of an artificial trans-activator that signaled to a genetic circuit containing a given reporter or response gene. The zinc finger proteins (each containing a separate intein) were engineered to recognize adjacent DNA sequences within the targeted gene. Thus, when the sequences were aligned, the inteins meshed and were excised, allowing the extein halves to rejoin and form a functional protein.

In the September 21, 2015, online edition of the journal Nature Methods the investigators described the use of these protein sensors to mediate sequence recognition-induced apoptosis as well as to detect and report a viral infection.

This approach established a synthetic biology framework for endowing mammalian cells with sentinel capabilities, which provided a programmable means to detect and remove infected cells. It may also be used to identify positively transduced or transfected cells, isolate recipients of intentional genomic edits, and increase the repertoire of inducible parts in synthetic biology.

“There is a range of applications for which this could be important,” said senior author Dr. James Collins, professor of medical engineering and science at the Massachusetts Institute of Technology. “This allows you to readily design constructs that enable a programmed cell to both detect DNA and act on that detection, with a report system and/or a respond system.”

Related Links:

Massachusetts Institute of Technology


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Gel Cards
DG Gel Cards

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more