LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Bacteria-Based Biosensor Detects Zinc Deficiency

By LabMedica International staff writers
Posted on 14 Sep 2015
Image: Plate containing E. coli producing a purple pigment indicative of low levels of zinc. The bacterium could be used to detect nutritional deficiencies in resource-limited areas of the world (Photo courtesy of Rob Felt, Georgia Institute of Technology).
Image: Plate containing E. coli producing a purple pigment indicative of low levels of zinc. The bacterium could be used to detect nutritional deficiencies in resource-limited areas of the world (Photo courtesy of Rob Felt, Georgia Institute of Technology).
A series of genetic engineering steps led to the development of a bacterial biosensor capable of visually distinguishing levels of zinc, a critical micronutrient.

Micronutrient deficiencies, including zinc deficiency, are responsible for hundreds of thousands of deaths annually. A key obstacle to allocating scarce treatment resources is the ability to measure population blood micronutrient status inexpensively and quickly enough to identify those who most need treatment.

To overcome this obstacle a team of molecular microbiologists at the Georgia Institute of Technology (Atlanta, USA) developed a novel approach for inexpensive screening of micronutrients, with zinc being the test case.

Towards this end, the investigators genetically engineered a strain of Escherichia coli to produce different colored pigments (violacein, lycopene, and beta-carotene) in response to different extracellular zinc levels. Genes for the pigments were taken from other organisms and inserted into the E. coli on a plasmid. The red and orange colors, lycopene and beta-carotene, were produced by genes taken from Pantoea anantis, a plant pathogen. The purple color, violacein, came from a soil bacterium.

Obtaining discrete color states in the carotenoid pathway required precise engineering of the E. coli's metabolism to prevent a reaction at low zinc concentrations but allow complete reaction at higher concentrations, and all under the constraints of the bacterium's natural regulator limitations. A combination of gene dosage, post-transcriptional, and post-translational regulation was necessary to allow visible color change over physiologically relevant ranges representing a small fraction of the regulator’s dynamic response range, with further tuning possible by modulation of precursor availability.

In practice, a pellet of the engineered bacteria was mixed with the plasma from a human subject. The E. coli multiplied, producing the color corresponding to the level of zinc in the sample. Purple corresponded to dangerously low levels, while red indicated borderline levels, and orange normal levels. The color was readily visible without any diagnostic or other electronic equipment.

"We think this is just enough technology to meet the needs," said Dr. Mark Styczynski, assistant professor of chemical and bio-molecular engineering at the Georgia Institute of Technology. "Information we can provide could one day help nutritional epidemiologists and non-governmental organizations determine the populations of people that may need interventions to address nutritional deficiencies."

"The general idea of bio-sensing is certainly out there, but we have taken the step of developing a system that does not require equipment in the field," said Dr. Styczynski. "We believe this will work well in low-resource areas. This is a convincing proof-of-principle, and we hope to begin the translational aspects of this system based on what we have already shown. It is a matter now of reducing this to practice for something that will ultimately be useful."

The novel assay for zinc deficiency was described in a paper published in the September 2015 issue of the journal Metabolic Engineering.

Related Links:

Georgia Institute of Technology


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Automatic CLIA Analyzer
Shine i9000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more