LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Drug Candidate Propels Cancer Cells into Fatal Overdrive

By LabMedica International staff writers
Posted on 23 Aug 2015
Image: Cancer cells were treated with a control (left) and the overstimulating compound MCB-613 (right) (Photo courtesy of Dr. Lei Wang, Baylor University College of Medicine).
Image: Cancer cells were treated with a control (left) and the overstimulating compound MCB-613 (right) (Photo courtesy of Dr. Lei Wang, Baylor University College of Medicine).
A candidate drug that destroys cancer cells by stimulating them to produce more proteins than the cells can actually process was shown to kill a wide variety of cancer cells in culture and to inhibit tumor growth in animal models.

Investigators at Baylor College of Medicine (Houston, TX, USA) identified the drug MCB-613 as an activator of the steroid receptor coactivators (SRC-1, SRC-2, and SRC-3) while screening a large number of compounds for drugs that would inhibit SRCs. However, when the investigators tested the compound with cultures of cancer cells, they found that MCB-613 could super-stimulate SRCs’ transcriptional activity. Further study revealed that MCB-613 increased SRCs’ interactions with other coactivators and markedly induced ER (endoplasmic reticulum) stress coupled to the generation of toxic reactive oxygen species (ROS).

Results published in the August 10, 2015, issue of the journal Cancer Cell revealed that MCB-613 killed human breast, prostate, lung, and liver cancer cells, while sparing normal cells. When administered to 13 mice with breast cancer, MCB-613 reduced tumor growth without causing toxicity, whereas tumors continued to grow by about three-fold over seven weeks in the control group of 14 mice. The toxic effect of the drug was shown to be due to the accumulation of unfolded proteins in the ER. The inability of the ER to cope with such a large number of proteins caused a state of stress to develop that stimulated production of toxic ROS species and the destruction of the cell.

"No prior drug has been previously developed or proposed that actually stimulates an oncogene to promote therapy," said contributing author Dr. David Lonard, associate professor of molecular and cell biology at Baylor College of Medicine. "Our prototype drug works in multiple types of cancers and encourages us that this could be a more general addition to the cancer drug arsenal."

Related Links:
Baylor College of Medicine 


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Clinical Chemistry System
P780

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more