LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Developmental Biologists Locate Source of Liver Stem Cells

By LabMedica International staff writers
Posted on 18 Aug 2015
Image: Cross-section of the human liver (Photo courtesy of Wikimedia Commons).
Image: Cross-section of the human liver (Photo courtesy of Wikimedia Commons).
Researchers have identified a stem cell line that is responsible for the generation of liver cells (hepatocytes), which are constantly required to maintain the health of the organ.

Working with mice, investigators at Stanford University (Palo Alto, CA, USA) traced the lineage of hepatocytes by determining expression of the Wnt-responsive gene Axin2 (axis inhibition protein 2). The WNT gene family consists of structurally related genes that encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis.

The investigators reported in the August 5, 2015, online edition of the journal Nature that they had identified a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells expressed the early liver progenitor marker Tbx3 (T-box 3), were diploid, and thereby differed from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiated into Tbx3-negative, polyploid hepatocytes, and could replace all hepatocytes along the liver lobule during homeostatic renewal. The population of liver stem cells was maintained by Wnt signals provided by endothelial cells in the adjacent central vein.

"We have solved a very old problem," said senior author Dr. Roel Nusse, professor of developmental biology at Stanford University. "We have shown that like other tissues that need to replace lost cells, the liver has stem cells that both proliferate and give rise to mature cells, even in the absence of injury or disease. Differentiated hepatocytes have amplified their chromosomes. That is, the cells have more than the usual two copies of every chromosome. This enables the cells to make more proteins, but it really compromises their ability to divide."

Related Links:

Stanford University


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Gold Member
Collection and Transport System
PurSafe Plus®

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more