LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cell Surface Protein Deletion Blocks AML Growth in Mouse Model

By LabMedica International staff writers
Posted on 03 Aug 2015
Image: Photomicrograph showing acute myeloid leukemia (AML) cells (Photo courtesy of the University of California, San Diego).
Image: Photomicrograph showing acute myeloid leukemia (AML) cells (Photo courtesy of the University of California, San Diego).
Cancer researchers have found that the cell surface protein tetraspanin3 (Tspan3) is required for the development and propagation of the fast-growing and extremely difficult-to-treat blood cancer, acute myelogenous leukemia (AML).

AML is an aggressive cancer that strikes both adults and children and is frequently resistant to therapy. Thus, identifying signals needed for AML propagation is a critical step toward developing new approaches for treating this disease.

Towards this end, investigators at the University of California, San Diego (USA; www.ucsd.edu) examined the role of Tspan3 by genetically engineering a line of mice to lack the gene required for production of this protein.

The investigators reported in the July 23, 2015, online edition of the journal Cell Stem Cell that Tspan3 "knockout" mice were born without overt defects. However, Tspan3 deletion impaired leukemia stem cell self-renewal and disease propagation and markedly improved survival in mouse models of AML. Additionally, Tspan3 inhibition blocked growth of AML patient samples, suggesting that Tspan3 was also important in human disease.

Results also showed that at the molecular level Tspan3 was a target of the RNA binding protein Musashi 2, which plays a key role in AML, and that the chemokine response of AML cancer cells was impaired by Tspan3 deletion.

“There has been great progress in pediatric leukemia research and treatment over the last few years,” said senior author Dr. Tannishtha Reya, professor of pharmacology at the University of California, San Diego. “But unfortunately, children with acute myeloid leukemia are often poor responders to current treatments. So identifying new approaches to target this disease remains critically important.”

“Tetraspanin3 (Tspan3), a cell surface molecule, serves as a key link for cancer cells to interact with supportive parts of the microenvironment that help them replicate and flourish,” said Dr. Reya. “We found that blocking this molecule leads to a very profound inhibition of leukemia growth. The work really focuses on trying to understand the dependence of cancer cells on the microenvironment that surrounds them. The microenvironment refers to the normal cells, molecules, and blood vessels around the cancer that may support and fuel its expansion.

Related Links:

University of California, San Diego


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more