LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Methods Developed to Generate Normal Stem Cells from Patients with Mitochondrial Defects

By LabMedica International staff writers
Posted on 29 Jul 2015
Image: Researchers have generated disease-free stem cells from patients with mitochondrial disease that can be converted into any cell type including neuronal progenitors (left) or heart cells (right). These could potentially be used for future transplantation into patients (Photo courtesy of Salk Institute of Biological Studies).
Image: Researchers have generated disease-free stem cells from patients with mitochondrial disease that can be converted into any cell type including neuronal progenitors (left) or heart cells (right). These could potentially be used for future transplantation into patients (Photo courtesy of Salk Institute of Biological Studies).
A recent paper described two methods for converting cells from patients with mitochondrial defects into normal pluripotent stem cells that could be induced to differentiate into several different types of tissues.

Mutations in mitochondrial DNA (mtDNA) can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and the relative levels of mutant and normal mtDNA within each cell.

Investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) first described the situation of patients having both normal and mutated mtDNA. Skin cells from these patients could be turned into a population of stem cells, some with normal mtDNA and some with mutated mtDNA. It was then a simple matter to clone only the cells with normal mtDNA to form a population of normal pluripotent stem cells.

The other case centered on patients with few, if any cells with normal mtDNA. To solve this problem the investigators removed the nuclei of the patient's skin cells, which contain most of their genes, and transplanted them into donor egg cells with healthy mitochondria. The new egg cells were then used to generate healthy pluripotent stem cells.

Results published in the July 15, 2015, online edition of the journal Nature revealed that both reprogramming approaches offered complementary strategies for derivation of pluripotent stem cells containing exclusively normal mtDNA.

"Right now, there are no cures for mitochondrial diseases," said senior author Dr. Juan Carlos Izpisua Belmonte, professor of genetics at the Salk Institute. "Very recently, we have developed ways to prevent these diseases, so it was natural to next ask how we could treat them."

Related Links:

Salk Institute


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Human Estradiol Assay
Human Estradiol CLIA Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more