LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Switch to Glycolysis Puts Cells on Road to Becoming Cancerous

By LabMedica International staff writers
Posted on 19 Jul 2015
Image: The crystal structure of cytochrome c oxidase in a phospholipid bilayer. The intermembrane space lies to top of the image(Photo courtesy of Wikimedia Commons).
Image: The crystal structure of cytochrome c oxidase in a phospholipid bilayer. The intermembrane space lies to top of the image(Photo courtesy of Wikimedia Commons).
Mutations that impair the function of the electron transport chain component cytochrome c oxidase (CcO) induce cancerous changes in normal cells and make cancer cells more invasive.

The enzyme cytochrome c oxidase is a large transmembrane protein complex found in bacteria and the mitochondrion of eukaryotes. It is the last enzyme in the respiratory electron transport chain of mitochondria or bacteria located in the mitochondrial or bacterial membrane. It receives an electron from each of four cytochrome c molecules, and transfers them to one oxygen molecule, converting molecular oxygen to two molecules of water. In the process, it binds four protons from the inner aqueous phase to make water, and in addition translocates four protons across the membrane, helping to establish a transmembrane difference of proton electrochemical potential that ATP synthase then uses to synthesize ATP.

Investigators at the University of Pennsylvania (Philadelphia, USA) used shRNA (short hairpin RNA) to induce genetic silencing of the CcO complex and loss of CcO activity in multiple cell types from mouse and human sources.

They reported in the July 6, 2015, online edition of the journal Oncogene that loss of CcO activity resulted in metabolic shift to glycolysis, loss of anchorage-dependent growth, and acquired invasive phenotypes. Whole-genome expression analysis showed the upregulation of genes involved in cell signaling, extracellular matrix interactions, cell morphogenesis, cell motility, and migration.

The possible use of CcO dysfunction as a biomarker for cancer progression was supported by data indicating that esophageal tumors from human patients showed reduced CcO subunits IVi1 and Vb in regions that were previously found to be located at the hypoxic core of the tumors.

"Disrupting only a single protein subunit of cytochrome oxidase C led to major changes in the mitochondria and in the cells themselves," said senior author Dr. Narayan G. Avadhani, professor of biochemistry at the University of Pennsylvania.

"These cells showed all the characteristics of cancer cells. They displayed changes in their metabolism, becoming more reliant on glucose and reducing their synthesis of ATP. Instead of conducting oxidative phosphorylation, they largely switched over to conducting glycolysis, a less efficient means of making ATP that is common in cancer cells."

"That result alone could not tell us whether that was the cause or effect of tumors, but our cell system clearly says that mitochondrial dysfunction is a driving force in tumorigenesis," said Dr. Avadhani. "We are targeting the signaling pathway, developing a lot of small molecules and antibodies. Hopefully, if you block the signaling, the cells will not go into the so called oncogenic mode and instead would simply die."

Related Links:

University of Pennsylvania


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
Gold Member
Immunochromatographic Assay
CRYPTO Cassette

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more