We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Hybrid Gene Mapping Approach Yields Reference Quality Results

By LabMedica International staff writers
Posted on 15 Jul 2015
Image: The automated, benchtop Irys instrument enables the genomic researcher to acquire high-resolution, multi-color images and conduct single-molecule analysis of long DNA molecules (Photo courtesy of BioNano Genomics).
Image: The automated, benchtop Irys instrument enables the genomic researcher to acquire high-resolution, multi-color images and conduct single-molecule analysis of long DNA molecules (Photo courtesy of BioNano Genomics).
A team of genomics researchers from the USA and Europe have developed a new approach for describing nearly complete genomes by combining high-throughput DNA sequencing with genome mapping techniques.

Conventional next-generation sequencing (NGS) techniques are able to accurately detect certain types of variation, such as single nucleotide variants and small insertions or deletions, but miss many large or complex forms of genomic variation that are associated with human disease.

To overcome the inherent limitations of existing NGS methods, investigators at the Icahn School of Medicine at Mount Sinai (New York, NY, USA), several other American research institutions, and the European Molecular Biology Laboratory (Hamburg, Germany) combined two single molecule approaches. These were the long read sequencing method from Pacific Biosciences (Menlo Park, CA, USA) and Nanochannel Array and Irys reader technology from BioNano Genomics (San Diego, CA, USA). Pacific Biosciences sequencing enables reads exceeding 10 kilobases in length, which can directly resolve and phase complex forms of variation. The NanoChannel Array method confines and linearizes DNA molecules up to megabases in length to provide high-resolution genome maps.

The two techniques were combined into a hybrid approach that was used to analyze the NA12878 diploid genome, a well-sequenced specimen that is included in the 1000 Genomes project and is often used for benchmarking new techniques.

The investigators reported in the June 29, 2015, online edition of the journal Nature Methods that the hybrid assembly method markedly improved upon the contiguity observed from traditional shotgun sequencing approaches. They were able to identify complex structural variants (SVs) missed by other high-throughput approaches. In addition, they phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies.

“We created a high-throughput strategy that builds highly contiguous de novo genomes without the need for complex jumping libraries or targeted approaches. This strategy, in some cases, automatically resolved complete arms of chromosomes,” said senior author Dr. Ali Bashir, assistant professor of genetics and genomics at the Icahn School of Medicine. “While we focused this study on a human genome, the method can be applied to any new genome, including those with high genomic complexity, such as plants, that have been extremely challenging to study.”

“The study revealed an unprecedented view of genomic complexity, in many cases identifying regions overlooked by conventional sequencing or further refining previously known genetic variant classes,” said contributing author Dr. Jan Korbel, group leader at the European Molecular Biology Laboratory.

Related Links:

Icahn School of Medicine at Mount Sinai
European Molecular Biology Laboratory
BioNano Genomics 


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Gold Member
Collection and Transport System
PurSafe Plus®

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more