LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Sorting and Selecting Cancer Cells by Their Motility Will Advance Understanding of Metastatic Processes

By LabMedica International staff writers
Posted on 03 Jun 2015
Image: Micrograph of individual cancer cells that were isolated according to their motility. The cell on the left is less likely to metastasize (Photo courtesy of University of Michigan).
Image: Micrograph of individual cancer cells that were isolated according to their motility. The cell on the left is less likely to metastasize (Photo courtesy of University of Michigan).
In order to develop a better understanding of the mechanisms that cause some cancer cells to break away from the primary tumor and migrate to other parts of the body, a team of cancer researchers has created an instrument for sorting and selecting cancer cells based on their motility.

Tumor cell migration toward and into capillaries is an early and key event in cancer metastasis, yet not all cancer cells are imbued with the same capability to do so. This heterogeneity within a tumor is a fundamental property of cancer.

Conventional in vitro migration platforms have so far related to cell populations as an aggregate, which has led to a masking of intrinsic differences among cells. While some migration assays have reported the ability to resolve single cells, these platforms did not provide for selective retrieval of the distinct migrating and non-migrating cell populations for further analysis.

Therefore, to study the intrinsic differences in cells responsible for chemotactic heterogeneity, investigators at the University of Michigan (Ann Arbor, USA) developed a single-cell migration platform so that individual cells’ migration behavior could be studied and the heterogeneous population sorted based upon chemotactic phenotype. Furthermore, after migration, highly chemotactic and non-chemotactic cells were retrieved and proved viable for later molecular analysis of their differences.

In addition, as described in a paper published in the May 18, 2015, online edition of the journal Scientific Reports, the investigators modified the migration channel to resemble lymphatic capillaries to better understand how certain cancer cells are able to move through geometrically confining spaces.

"This work demonstrates an elegant approach to the study of cancer cell metastasis by combining expertise in engineering and biology," said senior author Dr. Euisik Yoon, professor of electrical engineering, computer science, and biomedical engineering at the University of Michigan. "In past decades, engineers have developed biological tools with better resolution, higher sensitivity, selectivity, and higher throughput. However, without compelling applications, these engineering tools have little practical relevance. The goal of our lab is to develop tools that can be widely disseminated to the biology community to eventually impact clinical care for patients."

Related Links:

University of Michigan


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more