LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blocking ITK Activity Slows Growth of Malignant Melanoma in Mouse Model

By LabMedica International staff writers
Posted on 13 May 2015
Image: Molecular model of IL2 inducible T-cell kinase (ITK) enzyme (Photo courtesy of Wikimedia Commons).
Image: Molecular model of IL2 inducible T-cell kinase (ITK) enzyme (Photo courtesy of Wikimedia Commons).
Development of malignant melanoma was found to depend to some extent on the activity of the enzyme produced by the gene interleukin-2 (IL2) inducible T-cell kinase (ITK).

Investigators at the University of North Carolina (Chapel Hill, USA) used an ITK-specific monoclonal antibody to probe sections from formalin-fixed paraffin-embedded tumor blocks or melanoma cell line arrays. ITK was visualized by immunohistochemistry (IHC).

Results published in the May 1, 2015, issue of the journal Clinical Cancer Research revealed that ITK was expressed at greater levels in primary and metastatic melanomas than in non-cancerous moles. In metastatic melanoma samples, 91% had higher expression levels than of the non-cancerous moles.

Treatment of melanoma-bearing mice with a low molecular weight ITK inhibitor reduced growth of ITK-expressing xenografts or established native melanomas.

“We have discovered that ITK is highly expressed in melanoma even though it was thought to be restricted to immune cells, and when you inhibit it, you decrease melanoma growth,” said senior author Dr. Nancy E. Thomas, professor of dermatology at the University of North Carolina. “Therefore, we think it is a good potential drug target.”

Related Links:
University of North Carolina


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Automatic CLIA Analyzer
Shine i9000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more