We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Hollow Microprobe Array Enables Isolation and Manipulation of Single Cells

By LabMedica International staff writers
Posted on 05 May 2015
Print article
Image: The photograph shows a silicon wafer microprobe array and a single cell isolated in a microwell (Photo courtesy of Toyohashi University of Technology).
Image: The photograph shows a silicon wafer microprobe array and a single cell isolated in a microwell (Photo courtesy of Toyohashi University of Technology).
A team of Japanese biomechanical engineers has developed a novel technique for isolating and manipulating single cells.

Investigators at Toyohashi University of Technology (Japan) used microelectromechanical systems fabrication technology to construct an array of hollow probes for the manipulation of single cells. They conducted a cell aspiration experiment with a glass pipette and modeled a cell using a standard linear solid model, which provided information for designing hollow stepped probes for minimally invasive single-cell manipulation.

The investigators etched a silicon wafer on both sides and formed holes with stepped structures that passed through the wafer. In order to trap cells, the inner diameters of the holes were reduced by plasma-enhanced chemical vapor deposition of SiO2. This fabrication process facilitated control of wall thickness, inner diameter, and outer diameter of the probes.

In experiments conducted with the fabricated probes, single cells were manipulated and placed in microwells at a single-cell level in a parallel manner. The investigators studied the capture, release, and survival rates of cells at different suction and release pressures. They reported in the March 2015 online edition of the journal Biomedical Microdevices that the cell trapping rate was directly proportional to the suction pressure, whereas the release rate and viability decreased with increasing the suction pressure. The proposed manipulation system allowed placement of cells in a well array for observance of adherence, spreading, culture, and death of the cells.

"We fabricated an array of hollow microprobes with designed diameters, heights, and numbers from a silicon substrate using microfabrication techniques," said first author Dr. Moeto Nagai, assistant professor of biomechanical engineering at Toyohashi University of Technology. "Single cells were trapped on the tips of the probes using a suction flow. The cells were then released and placed in an array of microwells. Parallel and versatile cell manipulation tools are essential for biomedical innovation, and microfabrication technologies offer massively parallel microstructures close to a human cell in size."

Related Links:
Toyohashi University of Technology


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.