LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Stem Cell Therapy Eliminates Brain Tumors in Mouse Model

By LabMedica International staff writers
Posted on 04 May 2015
Image: Tagged therapeutic stem cells (green) are targeting breast cancer metastases (red) in the brain of a mouse model (Photo courtesy of Dr. Khalid Shah, Massachusetts General Hospital).
Image: Tagged therapeutic stem cells (green) are targeting breast cancer metastases (red) in the brain of a mouse model (Photo courtesy of Dr. Khalid Shah, Massachusetts General Hospital).
Cancer researchers have developed a novel stem cell therapeutic approach for treating breast cancer that has spread to the brain.

Investigators at Massachusetts General Hospital (Boston, USA) and the Harvard Stem Cell Institute (Boston, MA, USA) initially developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, they demonstrated in the brains of the mice widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. They also showed extravasation of tumor cells and the close association of tumor cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in human patients.

To treat the breast tumors that had developed in the brains of the mice the investigators created a line of genetically engineered adult stem cells. The stem cells, which were known to be naturally attracted toward tumors in the brain, were modified in two ways. The genomes of the stem cells were altered by insertion of two genes, the gene for a variant of TRAIL (TNF receptor superfamily member 10A/10B apoptosis-inducing ligand) and the gene for herpes simplex virus thymidine kinase (HSV-TK).

TRAIL is a cytokine that is produced and secreted by most normal tissue cells. It causes apoptosis primarily in tumor cells by binding to certain death receptors. Since the mid-1990s it has been used as the basis for several anti-cancer drugs. The presence of the HSV-TK gene rendered the stem cells susceptible to the effects of the antiviral drug ganciclovir.

In experiments described in the April 24, 2015, online edition of the journal Brain, the investigators injected the modified stem cells into the brains of the mice. Imaging confirmed that the stem cells traveled to multiple metastatic sites and not to tumor-free areas. TRAIL secreted by the stem cells reduced growth of the tumors. Following inhibition of tumor growth, the stem cells were destroyed by injecting the mice with ganciclovir.

"Metastatic brain tumors - often from lung, breast or skin cancers - are the most commonly observed tumors within the brain and account for about 30% of advanced breast cancer metastases," said senior author Dr. Khalid Shah, professor of radiology and neurology at Massachusetts General Hospital. "Our results are the first to provide insight into ways of targeting brain metastases with stem-cell-directed molecules that specifically induce the death of tumor cells and then eliminating the therapeutic stem cells."

Related Links:

Massachusetts General Hospital
Harvard Stem Cell Institute


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
Sample Transportation System
Tempus1800 Necto

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more