Two Proteins Critical for Circadian Cycles Protect Cells from Mutations
|
By LabMedica International staff writers Posted on 17 Mar 2015 |

Image: Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).
Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead to cancer and other diseases.
The new study was carried out by researchers from The Scripps Research Institute (TSRI; La Jolla, CA, USA). “These proteins play an important role in the response to DNA damage,” said senior author Katja Lamia, “Researchers might eventually harness that knowledge for pharmaceutical targeting.”
People with unusual sleep schedules, such as flight attendants or rotating night-shift nurses, are at higher risk for certain health problems. The human body senses light and adjusts rhythms to the day-night cycle via the circadian clock. Hunger and sleepiness, for example, are strongly influenced by this clock. “When you have a deregulation of your circadian clock, you’re more prone to develop some kind of pathology, like diabetes, cancer, or heart disease,” said co-first author and research associate Anne-Laure Huber.
To investigated a possible cause of these health disparities, the team focused on the role of the circadian transcriptional repressors cryptochrome 1 (Cry1) and 2 (Cry2), which evolved from bacterial light-activated DNA repair enzymes. While cryptochromes are no longer light-activated, they do hold to a daily-regulated schedule, and stability of Cry1 and Cry2 is critical for circadian clock function. In humans, cryptochromes are essential for regulating blood sugar levels and protein production on a day-night cycle, but no longer have a direct role in DNA repair activity.
The study was initiated with proteomic screening to fish out proteins that could bind Cry1 or Cry2. The team found that Cry1 could bind Hausp, which has a known role in regulating the anti-cancer protein p53. The screening also showed that Hausp binds Cry2, but less strongly, suggesting that the nearly identical Cry1 and Cry2 have different roles related to DNA repair. “Most of the time people study them as redundant proteins, but we show that they have distinct functions in this DNA-repair pathway,” said Dr. Lamia.
Genetic expression experiments then showed that Hausp stabilizes Cry1, which helps prevent potential errors in DNA transcription that could occur upon DNA exposure to radiation. “This is very cool,” said co-first author and graduate student Stephanie Papp, “These proteins can sense that something is wrong in the cells.” When the researchers blocked Cry2 production, the cells no longer activated p21, a protein that stops mutant cells from dividing. “This could suggest that cells without Cry2 would be more susceptible to cancer,” said Dr. Lamia.
These and additional findings of the study showed that while Cry1/2 no longer directly repair DNA, they have adapted to provide an indirect role in the repair process, protecting genomic integrity via coordinated transcriptional regulation. This new link between circadian clock proteins and DNA repair is a clue to how disrupting day-night cycles could harm health.
The study, by Papp SJ, Huber AL, et al, was published March 10, 2015, in the journal eLife.
Related Links:
The Scripps Research Institute
The new study was carried out by researchers from The Scripps Research Institute (TSRI; La Jolla, CA, USA). “These proteins play an important role in the response to DNA damage,” said senior author Katja Lamia, “Researchers might eventually harness that knowledge for pharmaceutical targeting.”
People with unusual sleep schedules, such as flight attendants or rotating night-shift nurses, are at higher risk for certain health problems. The human body senses light and adjusts rhythms to the day-night cycle via the circadian clock. Hunger and sleepiness, for example, are strongly influenced by this clock. “When you have a deregulation of your circadian clock, you’re more prone to develop some kind of pathology, like diabetes, cancer, or heart disease,” said co-first author and research associate Anne-Laure Huber.
To investigated a possible cause of these health disparities, the team focused on the role of the circadian transcriptional repressors cryptochrome 1 (Cry1) and 2 (Cry2), which evolved from bacterial light-activated DNA repair enzymes. While cryptochromes are no longer light-activated, they do hold to a daily-regulated schedule, and stability of Cry1 and Cry2 is critical for circadian clock function. In humans, cryptochromes are essential for regulating blood sugar levels and protein production on a day-night cycle, but no longer have a direct role in DNA repair activity.
The study was initiated with proteomic screening to fish out proteins that could bind Cry1 or Cry2. The team found that Cry1 could bind Hausp, which has a known role in regulating the anti-cancer protein p53. The screening also showed that Hausp binds Cry2, but less strongly, suggesting that the nearly identical Cry1 and Cry2 have different roles related to DNA repair. “Most of the time people study them as redundant proteins, but we show that they have distinct functions in this DNA-repair pathway,” said Dr. Lamia.
Genetic expression experiments then showed that Hausp stabilizes Cry1, which helps prevent potential errors in DNA transcription that could occur upon DNA exposure to radiation. “This is very cool,” said co-first author and graduate student Stephanie Papp, “These proteins can sense that something is wrong in the cells.” When the researchers blocked Cry2 production, the cells no longer activated p21, a protein that stops mutant cells from dividing. “This could suggest that cells without Cry2 would be more susceptible to cancer,” said Dr. Lamia.
These and additional findings of the study showed that while Cry1/2 no longer directly repair DNA, they have adapted to provide an indirect role in the repair process, protecting genomic integrity via coordinated transcriptional regulation. This new link between circadian clock proteins and DNA repair is a clue to how disrupting day-night cycles could harm health.
The study, by Papp SJ, Huber AL, et al, was published March 10, 2015, in the journal eLife.
Related Links:
The Scripps Research Institute
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more






 Analyzer.jpg)
