LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Oxygen Deprivation Activates Tumor Survival Genes in Solid Tumors

By LabMedica International staff writers
Posted on 15 Mar 2015
Image: Photomicrograph of mouse embryonic cells that have been programmed to overexpress Higd1a protein (shown in green). This protein slows down the metabolism of cancer cells, allowing them to hibernate and survive long-term (Photo courtesy of the University of California, San Francisco).
Image: Photomicrograph of mouse embryonic cells that have been programmed to overexpress Higd1a protein (shown in green). This protein slows down the metabolism of cancer cells, allowing them to hibernate and survive long-term (Photo courtesy of the University of California, San Francisco).
A possible new approach for treating reoccurring tumors would target the protein hypoxia-inducible gene domain family member 1A (Higd1a).

Higd1a is a survival factor induced by hypoxia-inducible factor 1 (HIF-1). HIF-1 regulates many responses to oxygen deprivation but is frequently absent in viable cells within the hypoxic perinecrotic regions of solid tumors. Cells in this region are deprived of both oxygen and nutrients, which promote their resistance to therapy.

Since Higd1a decreases tumor growth but promotes tumor cell survival in vivo, investigators at the University of California, San Francisco (USA) have examined how the HIGD1A gene becomes activated in the absence of its usual inducer, HIF-1.

They reported in the February 12, 2015, online edition of the journal Cell Reports that the human HIGD1A gene was located on chromosome 3p22.1, where many tumor suppressor genes reside. Consistent with this, the HIGD1A gene promoter was differentially methylated in human cancers, preventing its hypoxic induction. However, when hypoxic tumor cells were confronted with glucose deprivation, DNA methyltransferase activity was inhibited, enabling HIGD1A expression, metabolic adaptation, and possible dormancy induction. Under these conditions Higd1a protein was available to interact with the mitochondrial electron transport chain to repress oxygen consumption, enhance AMPK (AMP-dependent kinase) activity, and lower cellular ROS (reactive oxygen species) levels.

Studies conducted in vivo with tumor cells that had been genetically engineered to overexpress HIGD1A, demonstrated dramatically repressed tumor growth but significantly enhanced overall tumor survival, and these effects were even seen in mice that lacked the HIF-1 protein.

Based on these results, the authors suggested that, "Our findings therefore reveal important new roles for this family of mitochondrial proteins in cancer biology."

Related Links:

University of California, San Francisco


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Gold Member
Hybrid Pipette
SWITCH

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more