LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Low Cost Platform for Studying Molecular Interactions Based on DNA Gel Electrophoresis

By LabMedica International staff writers
Posted on 18 Feb 2015
Image: Programmable, self-assembled DNA nanoswitches serve both as templates for positioning molecules, and as sensitive, quantitative reporters of molecular association and dissociation. The figure depicts gel electrophoresis separation of linear and closed loop DNA strands (Photo courtesy of Harvard Medical School).
Image: Programmable, self-assembled DNA nanoswitches serve both as templates for positioning molecules, and as sensitive, quantitative reporters of molecular association and dissociation. The figure depicts gel electrophoresis separation of linear and closed loop DNA strands (Photo courtesy of Harvard Medical School).
A novel platform for studying molecular interactions is based on the separation of linear and circular forms of DNA by gel electrophoresis.

Investigators at Harvard Medical School (Boston, MA, USA) devised a system that used "nanoswitches," strands of DNA onto which molecules of interest were strategically attached at various locations along the strand. Interactions between these molecules, such as binding of a drug compound to its intended target or binding of a protein to its receptor on a cell, caused the shape of the DNA strand to change from an open and linear shape to a closed loop. DNA that had morphed into a closed loop form was easily separated from linear DNA by gel electrophoresis.

The investigators demonstrated this low-cost, versatile, "lab-on-a-molecule" system by characterizing ten different interactions, including a complex four-body interaction with five discernible states. This study was published in the February 2015 issue of the journal Nature Methods.

"Bio–molecular interaction analysis, a cornerstone of biomedical research, is traditionally accomplished using equipment that can cost hundreds of thousands of dollars," said senior author Dr. Wesley P. Wong, assistant professor of biological chemistry and molecular pharmacology at Harvard Medical School. "Rather than develop a new instrument, we have created a nanoscale tool made from strands of DNA that can detect and report how molecules behave, enabling biological measurements to be made by almost anyone, using only common and inexpensive laboratory reagents."

Related Links:

Harvard Medical School


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Homocysteine Quality Control
Liquichek Homocysteine Control

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more