LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mini-Organism-on-a-Chip May Replace Test Animals in Drug Studies

By LabMedica International staff writers
Posted on 16 Feb 2015
Image: Using the compact multi-organ chip (comparable in size to a one-euro piece), and those of three separate microcircuits, researchers can study the regeneration of certain kidney cells (Photo courtesy of Fraunhofer Institute for Material and Beam Technology IWS).
Image: Using the compact multi-organ chip (comparable in size to a one-euro piece), and those of three separate microcircuits, researchers can study the regeneration of certain kidney cells (Photo courtesy of Fraunhofer Institute for Material and Beam Technology IWS).
A team of German biomedical researchers has developed a highly miniaturized micro-circulatory system for testing the response of various body organs to drugs or other chemicals.

Investigators at the Fraunhofer Institute for Material and Beam Technology IWS (Dresden, Germany) and colleagues at the Institute for Biotechnology at the Technical University of Berlin (Germany) have been working at the cutting edge of research dedicated to replacing test animals with relevant, reproducible alternatives.

To this end they developed a "mini-organism-on-a-chip." This system was designed to mimic the physiology of a human being on a scale of 1:100,000. The chip carries a series of micro-compartments that can be loaded with cells from different organs and are connected by a micro-channel circulatory system. A miniature pump is capable of manipulating flow rates of less than 0.5 microliters per second through the channels. This system ensures there is a constant flow of liquid cell culture medium throughout the mini-organism. The exact configuration of the chip—the number of mini-organs and the connection to the micro-channels—can be changed to accommodate different sets of questions and different applications.

“Most medications work systemically— that is to say, on the organism as a whole. In doing so, toxic substances frequently emerge through metabolic processes, which in turn damage only certain organs,” said Dr. Frank Sonntag, project leader at the Fraunhofer Institute for Material and Beam Technology. “We know today that certain kidney cells, the endothelial cells, play a key role in almost every kidney disease. With the in vitro tests to date, there was always the problem that the endothelial cells worked only under current. Here, our multi-organ chip could offer a test environment that would allow you to observe how cells regenerate following an injury."

Related Links:

Fraunhofer Institute for Material and Beam Technology IWS
Institute for Biotechnology at the Technical University of Berlin


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
Gel Cards
DG Gel Cards

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more