Possible New Target Found for Treating Brain Inflammation
|
By LabMedica International staff writers Posted on 28 Jan 2015 |
Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.
This treatment approach may also become useful against more common disorders that involve brain inflammation—a classification that includes Alzheimer’s, multiple sclerosis, Parkinson’s, amyotrophic lateral sclerosis (ALS), and secondary injury after stroke and head injuries. Such inflammation frequently fails to respond to standard anti-inflammatory drugs. “This finding is a good example of what can be gained from studying enzymes linked to rare human genetic disorders,” said Benjamin F. Cravatt, chair of the department of chemical physiology and member at The Scripps Research Institute’s (TSRI; LA Jolla, CA, USA) Skaggs Institute for Chemical Biology.
The new study by Dr. Cravatt’s team, which was published January 12, 2015, in the journal Nature Chemical Biology, arose from investigations of PHARC, a rare and enigmatic inherited disorder that was first described by Norwegian researchers in 2009. Named for its unique set of typical symptoms (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract) PHARC typically presents in early adolescence and progressively worsens with age.
In 2010, PHARC was associated with gene mutations that inactivate the enzyme ABHD12. The finding encouraged Dr. Cravatt and his colleagues to develop a mouse model of the disease in which the ABHD12 gene is similarly turned off. Studies of those “PHARC mice” revealed that the ABHD12 enzyme typically degrades immune-signaling lipid molecules called lysophosphatidylserines (lyso-PSs) in the brain. ABHD12’s absence in the PHARC mice leads to an abnormal accumulation of lyso-PSs and subsequent neuroinflammation.
Having identified an enzyme that normally breaks down lyso-PS molecules, Dr. Cravatt and his laboratory set out, in the new study, to find an enzyme that makes lyso-PSs. In principle, such an enzyme could be targeted with compounds that inhibit its activity, to tamp down lyso-PS levels in the nervous system and thereby treat PHARC. To find a lyso-PS-making enzyme, Cravatt lab research associate Siddhesh S. Kamat led the effort to develop a sophisticated test for detecting the enzyme-mediated conversion of precursor phosphatidylserine (PS) molecules to lyso-PSs. “Using this test we discovered a cryptic yet distinct lyso-PS-making enzyme activity in the mouse brain,” said Dr. Kamat.
The tests revealed particularly high levels of this activity in the cerebellum, a brain area strongly impacted in PHARC. Moreover, the researchers revealed that this lyso-PS-making activity could be powerfully blocked in the lab dish by the weight-loss drug tetrahydrolipstatin (THL, also known as Orlistat and Xenical). THL is a known inhibitor of multiple enzymes, and the researchers were able to link the lyso-PS-making activity in mouse brain specifically to one of these enzymes: an earlier uncharacterized enzyme called ABHD16A.
In further research, Dr. Cravatt’s team began a collaboration with the laboratory of chemist Amy R. Howell at the University of Connecticut to find a more potent and selective inhibitor of ABHD16A, first as an approach for studying the enzyme. “Dr. Howell very generously allowed us to screen her library of THL-related compounds for ABHD16A inhibitors,” Dr. Cravatt said.
The scientists eventually isolated a small-molecule compound, KC01, which disrupts ABHD16A activity in mammalian cells more selectively than THL does. “Using this inhibitor with advanced chemical proteomic and metabolomics techniques, we were able to confirm that ABHD16A is a major producer of lyso-PS molecules in several different mammalian cells,” Dr. Kamat said.
The scientists found that blocking ABHD16A activity with KC01 markedly reduced secreted lyso-PS levels in culture and brought raised lyso-PS levels back down almost to normal in cells derived from PHARC patients. The treatment also greatly reduced the secretion of inflammatory compounds by PHARC-mouse immune cells (macrophages) following exposure to a bacterial toxin. Finally, the scientists validated the role of ABHD16A by breeding a line of mice whose ABHD16A gene was inactivated. The ABHD16A-knockout animals grew up with lower than usual brain levels of lyso-PSs, and their macrophages showed a correspondingly muted response to immune stimulation.
Dr. Cravatt reported that he hopes to conduct future research in collaboration with the Howell laboratory to develop a better ABHD16A inhibitor that, dissimilar to THL and KC01, can reach the brain from the bloodstream and thus can be tested in live mice—and possibly in PHARC patients someday. “We also think there is a potential for applying the lyso-PS-lowering strategy more broadly against neurological and immunological disorders,” concluded Dr. Cravatt.
Related Links:
The Scripps Research Institute
This treatment approach may also become useful against more common disorders that involve brain inflammation—a classification that includes Alzheimer’s, multiple sclerosis, Parkinson’s, amyotrophic lateral sclerosis (ALS), and secondary injury after stroke and head injuries. Such inflammation frequently fails to respond to standard anti-inflammatory drugs. “This finding is a good example of what can be gained from studying enzymes linked to rare human genetic disorders,” said Benjamin F. Cravatt, chair of the department of chemical physiology and member at The Scripps Research Institute’s (TSRI; LA Jolla, CA, USA) Skaggs Institute for Chemical Biology.
The new study by Dr. Cravatt’s team, which was published January 12, 2015, in the journal Nature Chemical Biology, arose from investigations of PHARC, a rare and enigmatic inherited disorder that was first described by Norwegian researchers in 2009. Named for its unique set of typical symptoms (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract) PHARC typically presents in early adolescence and progressively worsens with age.
In 2010, PHARC was associated with gene mutations that inactivate the enzyme ABHD12. The finding encouraged Dr. Cravatt and his colleagues to develop a mouse model of the disease in which the ABHD12 gene is similarly turned off. Studies of those “PHARC mice” revealed that the ABHD12 enzyme typically degrades immune-signaling lipid molecules called lysophosphatidylserines (lyso-PSs) in the brain. ABHD12’s absence in the PHARC mice leads to an abnormal accumulation of lyso-PSs and subsequent neuroinflammation.
Having identified an enzyme that normally breaks down lyso-PS molecules, Dr. Cravatt and his laboratory set out, in the new study, to find an enzyme that makes lyso-PSs. In principle, such an enzyme could be targeted with compounds that inhibit its activity, to tamp down lyso-PS levels in the nervous system and thereby treat PHARC. To find a lyso-PS-making enzyme, Cravatt lab research associate Siddhesh S. Kamat led the effort to develop a sophisticated test for detecting the enzyme-mediated conversion of precursor phosphatidylserine (PS) molecules to lyso-PSs. “Using this test we discovered a cryptic yet distinct lyso-PS-making enzyme activity in the mouse brain,” said Dr. Kamat.
The tests revealed particularly high levels of this activity in the cerebellum, a brain area strongly impacted in PHARC. Moreover, the researchers revealed that this lyso-PS-making activity could be powerfully blocked in the lab dish by the weight-loss drug tetrahydrolipstatin (THL, also known as Orlistat and Xenical). THL is a known inhibitor of multiple enzymes, and the researchers were able to link the lyso-PS-making activity in mouse brain specifically to one of these enzymes: an earlier uncharacterized enzyme called ABHD16A.
In further research, Dr. Cravatt’s team began a collaboration with the laboratory of chemist Amy R. Howell at the University of Connecticut to find a more potent and selective inhibitor of ABHD16A, first as an approach for studying the enzyme. “Dr. Howell very generously allowed us to screen her library of THL-related compounds for ABHD16A inhibitors,” Dr. Cravatt said.
The scientists eventually isolated a small-molecule compound, KC01, which disrupts ABHD16A activity in mammalian cells more selectively than THL does. “Using this inhibitor with advanced chemical proteomic and metabolomics techniques, we were able to confirm that ABHD16A is a major producer of lyso-PS molecules in several different mammalian cells,” Dr. Kamat said.
The scientists found that blocking ABHD16A activity with KC01 markedly reduced secreted lyso-PS levels in culture and brought raised lyso-PS levels back down almost to normal in cells derived from PHARC patients. The treatment also greatly reduced the secretion of inflammatory compounds by PHARC-mouse immune cells (macrophages) following exposure to a bacterial toxin. Finally, the scientists validated the role of ABHD16A by breeding a line of mice whose ABHD16A gene was inactivated. The ABHD16A-knockout animals grew up with lower than usual brain levels of lyso-PSs, and their macrophages showed a correspondingly muted response to immune stimulation.
Dr. Cravatt reported that he hopes to conduct future research in collaboration with the Howell laboratory to develop a better ABHD16A inhibitor that, dissimilar to THL and KC01, can reach the brain from the bloodstream and thus can be tested in live mice—and possibly in PHARC patients someday. “We also think there is a potential for applying the lyso-PS-lowering strategy more broadly against neurological and immunological disorders,” concluded Dr. Cravatt.
Related Links:
The Scripps Research Institute
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







