New Software Uses X-Ray Diffraction to Generate 3-D Images of Molecular Machines
|
By LabMedica International staff writers Posted on 05 Jan 2015 |
![Image: A membrane protein called cysZ, imaged in three dimensions with Phenix software using data that could not previously be analyzed (Photo courtesy of the Los Alamos [US] National Laboratory). Image: A membrane protein called cysZ, imaged in three dimensions with Phenix software using data that could not previously be analyzed (Photo courtesy of the Los Alamos [US] National Laboratory).](https://globetechcdn.com/mobile_labmedica/images/stories/articles/article_images/2015-01-05/JQR-888.jpg)
Image: A membrane protein called cysZ, imaged in three dimensions with Phenix software using data that could not previously be analyzed (Photo courtesy of the Los Alamos [US] National Laboratory).
Scientists are making it simpler for pharmaceutical companies and researchers to visualize the precise inner processes of molecular machines.
“Inside each cell in our bodies and inside every bacterium and virus are tiny but complex protein molecules that synthesize chemicals, replicate genetic material, turn each other on and off, and transport chemicals across cell membranes,” said Tom Terwilliger, a US Department of Energy (DOE) Los Alamos National Laboratory (Los Alamos, NM, USA) scientist. “Understanding how all these machines work is the key to developing new therapeutics, for treating genetic disorders, and for developing new ways to make useful materials.”
These molecular machines are very minute: a million of them positioned side-by-side would take up less than an inch of space. Researchers can see them however, using X-rays, crystals, and computers. Researchers produce billions of copies of a protein machine, dissolve them in water, and grow crystals of the protein, similar to growing sugar crystals except that the machines are larger than a sugar molecule.
After that, the scientists shined a beam of X-rays at a crystal and measure the brightness of each of the thousands of diffracted X-ray spots that are produced. Then researchers use the powerful Phenix software, developed by scientists at Los Alamos, Lawrence Berkeley National Laboratory (LBNL; Berkeley, CA, USA), Duke (Durham, NC, USA), and Cambridge Universities (UK), to analyze the diffraction spots and produce a three-dimensional (3-D) image of a single protein machine. This image shows the researchers precisely how the protein machines are constructed.
Recently, Los Alamos scientists worked with their colleagues at LBNL and Cambridge University to make it even easier to visualize a molecular machine. In a report published online December 22, 2014, in the journal Nature Methods, Los Alamos scientists and their colleagues demonstrated that they captured 3D images of molecular machines using X-ray diffraction spots that could not previously be analyzed.
Some molecular machines contain a few metal atoms or other atoms that diffract X-rays differently than the carbon, oxygen, nitrogen, and hydrogen atoms that comprise most of the atoms in a protein. The Phenix software locates those metal atoms first, and then uses their locations to find all the other atoms. For most molecular machines, however, metal atoms have to be incorporated into the machine artificially to make this all work.
The key new advance to which Los Alamos scientists have contributed was revealing that useful statistical techniques could be applied to find metal atoms even if they do not scatter X-rays very differently than all the other atoms. Even metal atoms such as sulfur that are naturally part of nearly all proteins can be found and used to generate a 3-D picture of a protein. Now that it will often be possible to see a three-dimensional picture of a protein without artificially integrating metal atoms into them, many more molecular machines can be examined.
Molecular machines that have recently been seen in 3-D detail include a massive molecular machine called Cascade that will be reported in the journal Science later in 2015. The Cascade machine is present in bacteria and can recognize DNA that comes from viruses that infect the bacteria. The Cascade machine is comprised of 11 proteins and an RNA molecule and looks similar to a seahorse, with the RNA molecule snaking through the whole ‘body’ of the seahorse. If a foreign piece of DNA in the bacterial cell is complementary to part of the RNA molecule then another specialized machine can come by and cut up the foreign DNA, saving the bacterium from infection.
Los Alamos and Cambridge University scientists who were developing the Phenix software were part of the team that visualized this protein machine for the first time. The Phenix software has been used to determine the 3-D shapes of over 15,000 different protein machines and has been cited by over 5,000 scientific publications.
Related Links:
Los Alamos National Laboratory
“Inside each cell in our bodies and inside every bacterium and virus are tiny but complex protein molecules that synthesize chemicals, replicate genetic material, turn each other on and off, and transport chemicals across cell membranes,” said Tom Terwilliger, a US Department of Energy (DOE) Los Alamos National Laboratory (Los Alamos, NM, USA) scientist. “Understanding how all these machines work is the key to developing new therapeutics, for treating genetic disorders, and for developing new ways to make useful materials.”
These molecular machines are very minute: a million of them positioned side-by-side would take up less than an inch of space. Researchers can see them however, using X-rays, crystals, and computers. Researchers produce billions of copies of a protein machine, dissolve them in water, and grow crystals of the protein, similar to growing sugar crystals except that the machines are larger than a sugar molecule.
After that, the scientists shined a beam of X-rays at a crystal and measure the brightness of each of the thousands of diffracted X-ray spots that are produced. Then researchers use the powerful Phenix software, developed by scientists at Los Alamos, Lawrence Berkeley National Laboratory (LBNL; Berkeley, CA, USA), Duke (Durham, NC, USA), and Cambridge Universities (UK), to analyze the diffraction spots and produce a three-dimensional (3-D) image of a single protein machine. This image shows the researchers precisely how the protein machines are constructed.
Recently, Los Alamos scientists worked with their colleagues at LBNL and Cambridge University to make it even easier to visualize a molecular machine. In a report published online December 22, 2014, in the journal Nature Methods, Los Alamos scientists and their colleagues demonstrated that they captured 3D images of molecular machines using X-ray diffraction spots that could not previously be analyzed.
Some molecular machines contain a few metal atoms or other atoms that diffract X-rays differently than the carbon, oxygen, nitrogen, and hydrogen atoms that comprise most of the atoms in a protein. The Phenix software locates those metal atoms first, and then uses their locations to find all the other atoms. For most molecular machines, however, metal atoms have to be incorporated into the machine artificially to make this all work.
The key new advance to which Los Alamos scientists have contributed was revealing that useful statistical techniques could be applied to find metal atoms even if they do not scatter X-rays very differently than all the other atoms. Even metal atoms such as sulfur that are naturally part of nearly all proteins can be found and used to generate a 3-D picture of a protein. Now that it will often be possible to see a three-dimensional picture of a protein without artificially integrating metal atoms into them, many more molecular machines can be examined.
Molecular machines that have recently been seen in 3-D detail include a massive molecular machine called Cascade that will be reported in the journal Science later in 2015. The Cascade machine is present in bacteria and can recognize DNA that comes from viruses that infect the bacteria. The Cascade machine is comprised of 11 proteins and an RNA molecule and looks similar to a seahorse, with the RNA molecule snaking through the whole ‘body’ of the seahorse. If a foreign piece of DNA in the bacterial cell is complementary to part of the RNA molecule then another specialized machine can come by and cut up the foreign DNA, saving the bacterium from infection.
Los Alamos and Cambridge University scientists who were developing the Phenix software were part of the team that visualized this protein machine for the first time. The Phenix software has been used to determine the 3-D shapes of over 15,000 different protein machines and has been cited by over 5,000 scientific publications.
Related Links:
Los Alamos National Laboratory
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







