Compressed Ultrafast Photography Designed to Aid Scientific Research
|
By LabMedica International staff writers Posted on 31 Dec 2014 |

Image: Washington University engineers have developed the world’s fastest receive-only 2-D camera that can capture events up to 100 billion frames per second (Photo courtesy of Washington University).

Image: The CUP system configuration (Photo courtesy of Washington University).
A group of biomedical engineers has developed the world’s fastest receive-only, two-dimensional (2-D) camera, a device that can capture actions up to 100 billion frames per second. That is remarkably more rapid than any current receive-only ultrafast imaging techniques, which are limited by on-chip storage and electronic readout speed to operations of approximately 10 million frames per second.
The researchers, from Washington University in St. Louis (MO, USA), and led by Lihong Wang, PhD, a professor of biomedical engineering, using the technique, called compressed ultrafast photography (CUP), have made movies of the images they captured with single laser shots of four physical phenomena: laser pulse reflection, refraction, faster-than light propagation of what is called non-information, and photon racing in two media. The images are compelling, remarkable, and represent a new era scientific exploration.
The research was published in the December 4, 2014, issue of the journal Nature. “For the first time, humans can see light pulses on the fly,” Prof. Wang said. “Because this technique advances the imaging frame rate by orders of magnitude, we now enter a new regime to open up new visions. Each new technique, especially one of a quantum leap forward, is always followed a number of new discoveries. It’s our hope that CUP will enable new discoveries in science—ones that we can’t even anticipate yet.”
This camera does not look similar to a typical one; instead, it is a range of devices envisioned to work with high-powered microscopes and telescopes to capture dynamic natural and physical phenomena. Once the raw data are acquired, the actual images are formed on a personal computer (PC) with the technology known as computational imaging.
The development of the technology was funded by two grants from the US National Institutes of Health that support pioneering and potentially transformative approaches to major challenges in biomedical research. “This is an exciting advance and the type of groundbreaking work that these high-risk NIH [US National Institutes of Health; Bethesda, MD, USA] awards are designed to support,” said Richard Conroy, PhD, program director of optical imaging at the US National Institute of Biomedical Imaging and Bioengineering, part of the NIH. “These ultrafast cameras have the potential to greatly enhance our understanding of very fast biological interactions and chemical processes and allow us to build better models of complex, dynamical systems.”
An immediate application is in biomedicine. One of the movies shows a green excitation light pulsing toward fluorescent molecules on the right where the green converts to red, which is the fluorescence. By tracking this, the researchers can get a single shot assessment of the fluorescence lifetime, which can be used to detect diseases or reflect cellular environmental conditions such as pH or oxygen pressure.
Prof. Wang envisions applications in astronomy and forensics, where the advanced imaging frame rate could study the temporal activities of a supernova that occurred light years away, or monitor and forecast the movements of thousands of potentially hazardous pieces of “space junk,” refuse of old satellites and jettisoned space craft hurtling about at high speed in outer space. In the forensic field, CUP might be used in reproducing bullet pathways, which could once again open up the [President] Kennedy assassination conspiracy theories and revive a more accurate analysis of the strange physics of the “magic bullet.”
Prof. Wang and his collaborators essentially added components and used algorithms to complement an existing technology known as a streak camera, which measures the intensity variation in a pulse of light with time. While a streak camera is fast, it gives only a one-dimensional view, which “is not intuitive—much analogous to watching a horse race through a distant vertical slit,” Dr. Wang said. “We expanded the view into 2-D space, more like what we see in the real world.”
CUP photographs an object with a specialty camera lens, which takes the photons from the object on a path through a tube-like structure to a tiny apparatus called a digital micromirror device (DMD), smaller than a dime though hosting approximately 1 million micromirrors, each one just seven by seven micrometers squared. There, micromirrors are used to encode the image, then reflect the photons to a beam splitter which shoots the photons to the widened slit of a streak camera. The photons are converted to electrons, which are then sheared with the use of two electrodes, converting time to space. The electrodes apply a voltage that ramps from high to low, so the electrons will arrive at different times and land at different vertical positions. An instrument called a charge-coupled device (CCD) stores all the raw data. All of this occurs at the remarkable pace of 5 nanoseconds (one nanosecond is a billionth of a second).
Prof. Wang’s research with CUP pushes the dimensional limits of fundamental physics and also pushes the limits of deep imaging of biologic tissues, one of Dr. Wang’s research specialties. “Fluorescence is an important aspect of biological technologies,” he stated. “We can use CUP to image the lifetimes of various fluorophores, including fluorescent proteins, at light speed.”
For astronomers, CUP can be a transformative, according to Dr. Wang. “Combine CUP imaging with the Hubble telescope, and we will have both the sharpest spatial resolution of the Hubble and the highest temporal solution with CUP,” he said. “That combination is bound to discover new science.”
Related Links:
Washington University in St. Louis
The researchers, from Washington University in St. Louis (MO, USA), and led by Lihong Wang, PhD, a professor of biomedical engineering, using the technique, called compressed ultrafast photography (CUP), have made movies of the images they captured with single laser shots of four physical phenomena: laser pulse reflection, refraction, faster-than light propagation of what is called non-information, and photon racing in two media. The images are compelling, remarkable, and represent a new era scientific exploration.
The research was published in the December 4, 2014, issue of the journal Nature. “For the first time, humans can see light pulses on the fly,” Prof. Wang said. “Because this technique advances the imaging frame rate by orders of magnitude, we now enter a new regime to open up new visions. Each new technique, especially one of a quantum leap forward, is always followed a number of new discoveries. It’s our hope that CUP will enable new discoveries in science—ones that we can’t even anticipate yet.”
This camera does not look similar to a typical one; instead, it is a range of devices envisioned to work with high-powered microscopes and telescopes to capture dynamic natural and physical phenomena. Once the raw data are acquired, the actual images are formed on a personal computer (PC) with the technology known as computational imaging.
The development of the technology was funded by two grants from the US National Institutes of Health that support pioneering and potentially transformative approaches to major challenges in biomedical research. “This is an exciting advance and the type of groundbreaking work that these high-risk NIH [US National Institutes of Health; Bethesda, MD, USA] awards are designed to support,” said Richard Conroy, PhD, program director of optical imaging at the US National Institute of Biomedical Imaging and Bioengineering, part of the NIH. “These ultrafast cameras have the potential to greatly enhance our understanding of very fast biological interactions and chemical processes and allow us to build better models of complex, dynamical systems.”
An immediate application is in biomedicine. One of the movies shows a green excitation light pulsing toward fluorescent molecules on the right where the green converts to red, which is the fluorescence. By tracking this, the researchers can get a single shot assessment of the fluorescence lifetime, which can be used to detect diseases or reflect cellular environmental conditions such as pH or oxygen pressure.
Prof. Wang envisions applications in astronomy and forensics, where the advanced imaging frame rate could study the temporal activities of a supernova that occurred light years away, or monitor and forecast the movements of thousands of potentially hazardous pieces of “space junk,” refuse of old satellites and jettisoned space craft hurtling about at high speed in outer space. In the forensic field, CUP might be used in reproducing bullet pathways, which could once again open up the [President] Kennedy assassination conspiracy theories and revive a more accurate analysis of the strange physics of the “magic bullet.”
Prof. Wang and his collaborators essentially added components and used algorithms to complement an existing technology known as a streak camera, which measures the intensity variation in a pulse of light with time. While a streak camera is fast, it gives only a one-dimensional view, which “is not intuitive—much analogous to watching a horse race through a distant vertical slit,” Dr. Wang said. “We expanded the view into 2-D space, more like what we see in the real world.”
CUP photographs an object with a specialty camera lens, which takes the photons from the object on a path through a tube-like structure to a tiny apparatus called a digital micromirror device (DMD), smaller than a dime though hosting approximately 1 million micromirrors, each one just seven by seven micrometers squared. There, micromirrors are used to encode the image, then reflect the photons to a beam splitter which shoots the photons to the widened slit of a streak camera. The photons are converted to electrons, which are then sheared with the use of two electrodes, converting time to space. The electrodes apply a voltage that ramps from high to low, so the electrons will arrive at different times and land at different vertical positions. An instrument called a charge-coupled device (CCD) stores all the raw data. All of this occurs at the remarkable pace of 5 nanoseconds (one nanosecond is a billionth of a second).
Prof. Wang’s research with CUP pushes the dimensional limits of fundamental physics and also pushes the limits of deep imaging of biologic tissues, one of Dr. Wang’s research specialties. “Fluorescence is an important aspect of biological technologies,” he stated. “We can use CUP to image the lifetimes of various fluorophores, including fluorescent proteins, at light speed.”
For astronomers, CUP can be a transformative, according to Dr. Wang. “Combine CUP imaging with the Hubble telescope, and we will have both the sharpest spatial resolution of the Hubble and the highest temporal solution with CUP,” he said. “That combination is bound to discover new science.”
Related Links:
Washington University in St. Louis
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







