Antiangiogenic Treatment Improves Survival of Mice Models of Ovarian Cancer
|
By LabMedica International staff writers Posted on 08 Dec 2014 |
A new antiangiogenic treatment with 3TSR has been shown to shrink tumors and improves effectiveness of chemotherapy.
Epithelial ovarian cancer is the most lethal cancer of the female reproductive organs, with more than 200,000 new cases and more than 125,000 deaths each year worldwide. Because symptoms tend to be vague, 80% of these tumors are not recognized until the disease has metastasized to other region of the body. The conventional treatment for advanced ovarian cancer includes high-dose chemotherapy, which frequently results in debilitating side effects and for which the five-year survival rate is only 35%.
Now new research in an animal model finds that a novel combination therapy, which couples low-dose chemotherapy with an antiangiogenic treatment, resulted in better survival rates compared with standard therapy. Led by investigators from Beth Israel Deaconess Medical Center (BIDMC; Boston, MA, USA) and the University of Guelph (Guelph, ON, Canada), the findings show that the agent, 3TSR (type-1-repeat), not only led to tumor regression, but also improved tumor blood flow and enabled more efficient delivery of much smaller and less toxic doses of chemotherapy.
The study was published online November 2014 in the Journal of the Federation of American Societies for Experimental Biology (FASEB) and will be published in the February 2015 print issue. “The five-year survival rate for ovarian cancer has changed very little over the past 20 years and new treatment options are urgently needed,” said co-senior author Jack Lawler, PhD, an investigator in BIDMC’s Center for Vascular Biology Research and professor of pathology at Harvard Medical School (Boston, MA, USA). “High-dose chemotherapy is usually required for the treatment of advanced ovarian cancer because the vascular supply to the tumor is inefficient and the cells inside the tumor have limited exposure to the chemotherapy drugs. Our results showed that when pretreated with an antiangiogenic agent, the animals responded to smaller, more frequent doses of chemotherapy, while still deriving more clinical benefit compared to current therapy protocols.”
Similar to many other types of cancer, ovarian cancer obtains nutrients and oxygen by inducing the growth of new blood vessels, a process known as angiogenesis. Antiangiogenic approaches to treat cancers attempt to disrupt the balance between promoters and inhibitors of angiogenesis, either by inhibiting proangiogenic factors or by increasing antiangiogenic molecules.
The Lawler laboratory at BIDMC investigates thrombospondin-1 (TSP-1), the first naturally occurring protein to be identified as an angiogenesis inhibitor. “What we’re trying to do is to boost the antiangiogenic side of the balance in order to deprive the tumor of blood supply and halt growth,” he stated.
Earlier research by Dr. Lawler and others had revealed that a portion of TSP-1 known as 3TSR interacts with another protein, CD36, which is found on the surface of endothelial cells that line the blood vessels. Combined, the two molecules cause endothelial cells to block growing and die, reducing blood vessel growth and disrupting the tumor’s ability to survive. The new findings revealed that 3TSR was acting on more than just endothelial cells and was directly inhibiting growth of ovarian tumor cells. “We think this might be occurring because, like endothelial cells, ovarian cancer cells contain CD36,” said Dr. Lawler. “The sensitivity of the tumor cells to 3TSR means that both endothelial and tumor cells can be targeted with a single reagent.”
Many of the blood vessels in tumors do not function correctly to distribute blood because they are not correctly formed; these blood vessels are destroyed during the early phase of antiangiogenic treatment, resulting in a period of time when blood flow to the tumor improves. In this new study, Dr. Lawler, and co-senior author Jim Petrik, PhD, of the University of Guelph, wanted to find out if 3TSR would enhance uptake of chemotherapy drugs delivered through lower-dose “metronomic” regimen.
The scientists performed a series of experiments in which mouse ovarian cancer cells were injected into an animal model and allowed to grow until they demonstrated features similar to patients with advanced disease, specifically, the spread of small tumors throughout the abdomen and the accumulation of fluid called ascites. “This is the advanced stage at which most women are first diagnosed with ovarian cancer,” explained Dr. Lawler. The investigators then treated the mice with either intermittent doses of standard high-dose chemotherapy or with more frequent doses of low-dose chemotherapy. In each case, the chemotherapy was either administered on its own or in combination with pretreatment with 3TSR.
The end result for the pretreated mice receiving the smaller chemotherapy doses was a smaller tumor, with improved blood supply. “We were able to exploit this enhanced blood supply to improve chemotherapy drug delivery to the tumor, with excellent clinical effect,” added Dr. Lawler. “The benefit of this approach is that we can create an environment that increases the efficiency of drug delivery, enabling the use of significantly lower doses of the chemotherapeutic agents and thereby reducing the side effects associated with the treatment. The clinical implications are significant. With this approach, patients could receive significantly smaller doses of chemotherapy drug while deriving greater clinical benefit, compared to current therapy protocols. We hope that this will soon be tested in clinical trials.”
Related Links:
Beth Israel Deaconess Medical Center
University of Guelph
Epithelial ovarian cancer is the most lethal cancer of the female reproductive organs, with more than 200,000 new cases and more than 125,000 deaths each year worldwide. Because symptoms tend to be vague, 80% of these tumors are not recognized until the disease has metastasized to other region of the body. The conventional treatment for advanced ovarian cancer includes high-dose chemotherapy, which frequently results in debilitating side effects and for which the five-year survival rate is only 35%.
Now new research in an animal model finds that a novel combination therapy, which couples low-dose chemotherapy with an antiangiogenic treatment, resulted in better survival rates compared with standard therapy. Led by investigators from Beth Israel Deaconess Medical Center (BIDMC; Boston, MA, USA) and the University of Guelph (Guelph, ON, Canada), the findings show that the agent, 3TSR (type-1-repeat), not only led to tumor regression, but also improved tumor blood flow and enabled more efficient delivery of much smaller and less toxic doses of chemotherapy.
The study was published online November 2014 in the Journal of the Federation of American Societies for Experimental Biology (FASEB) and will be published in the February 2015 print issue. “The five-year survival rate for ovarian cancer has changed very little over the past 20 years and new treatment options are urgently needed,” said co-senior author Jack Lawler, PhD, an investigator in BIDMC’s Center for Vascular Biology Research and professor of pathology at Harvard Medical School (Boston, MA, USA). “High-dose chemotherapy is usually required for the treatment of advanced ovarian cancer because the vascular supply to the tumor is inefficient and the cells inside the tumor have limited exposure to the chemotherapy drugs. Our results showed that when pretreated with an antiangiogenic agent, the animals responded to smaller, more frequent doses of chemotherapy, while still deriving more clinical benefit compared to current therapy protocols.”
Similar to many other types of cancer, ovarian cancer obtains nutrients and oxygen by inducing the growth of new blood vessels, a process known as angiogenesis. Antiangiogenic approaches to treat cancers attempt to disrupt the balance between promoters and inhibitors of angiogenesis, either by inhibiting proangiogenic factors or by increasing antiangiogenic molecules.
The Lawler laboratory at BIDMC investigates thrombospondin-1 (TSP-1), the first naturally occurring protein to be identified as an angiogenesis inhibitor. “What we’re trying to do is to boost the antiangiogenic side of the balance in order to deprive the tumor of blood supply and halt growth,” he stated.
Earlier research by Dr. Lawler and others had revealed that a portion of TSP-1 known as 3TSR interacts with another protein, CD36, which is found on the surface of endothelial cells that line the blood vessels. Combined, the two molecules cause endothelial cells to block growing and die, reducing blood vessel growth and disrupting the tumor’s ability to survive. The new findings revealed that 3TSR was acting on more than just endothelial cells and was directly inhibiting growth of ovarian tumor cells. “We think this might be occurring because, like endothelial cells, ovarian cancer cells contain CD36,” said Dr. Lawler. “The sensitivity of the tumor cells to 3TSR means that both endothelial and tumor cells can be targeted with a single reagent.”
Many of the blood vessels in tumors do not function correctly to distribute blood because they are not correctly formed; these blood vessels are destroyed during the early phase of antiangiogenic treatment, resulting in a period of time when blood flow to the tumor improves. In this new study, Dr. Lawler, and co-senior author Jim Petrik, PhD, of the University of Guelph, wanted to find out if 3TSR would enhance uptake of chemotherapy drugs delivered through lower-dose “metronomic” regimen.
The scientists performed a series of experiments in which mouse ovarian cancer cells were injected into an animal model and allowed to grow until they demonstrated features similar to patients with advanced disease, specifically, the spread of small tumors throughout the abdomen and the accumulation of fluid called ascites. “This is the advanced stage at which most women are first diagnosed with ovarian cancer,” explained Dr. Lawler. The investigators then treated the mice with either intermittent doses of standard high-dose chemotherapy or with more frequent doses of low-dose chemotherapy. In each case, the chemotherapy was either administered on its own or in combination with pretreatment with 3TSR.
The end result for the pretreated mice receiving the smaller chemotherapy doses was a smaller tumor, with improved blood supply. “We were able to exploit this enhanced blood supply to improve chemotherapy drug delivery to the tumor, with excellent clinical effect,” added Dr. Lawler. “The benefit of this approach is that we can create an environment that increases the efficiency of drug delivery, enabling the use of significantly lower doses of the chemotherapeutic agents and thereby reducing the side effects associated with the treatment. The clinical implications are significant. With this approach, patients could receive significantly smaller doses of chemotherapy drug while deriving greater clinical benefit, compared to current therapy protocols. We hope that this will soon be tested in clinical trials.”
Related Links:
Beth Israel Deaconess Medical Center
University of Guelph
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







