LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blocking Binding of Bacteria to Fibrinogen Prevents Biofilm Formation and Catheter-Associated Bladder Infection in Mice

By LabMedica International staff writers
Posted on 30 Sep 2014
Image: To adhere to catheters and start urinary tract infections, bacteria extend microscopic fibers with sticky proteins at their ends. Researchers have developed a vaccine that blocks the EbpA protein, visible as a white bulge above, and stops infections in mice (Photo courtesy of Dr. John Heuser, Washington University School of Medicine).
Image: To adhere to catheters and start urinary tract infections, bacteria extend microscopic fibers with sticky proteins at their ends. Researchers have developed a vaccine that blocks the EbpA protein, visible as a white bulge above, and stops infections in mice (Photo courtesy of Dr. John Heuser, Washington University School of Medicine).
A team of molecular microbiologists has identified and targeted a critical step in biofilm formation and developed a vaccine that prevents catheter-associated urinary tract infections in mice.

Enterococci bacteria are a frequent cause of catheter-associated urinary tract infections, the most common type of hospital-acquired infection. Treatment has become increasingly difficult due to the emergence of multiantibiotic-resistant enterococcal strains and their ability to form biofilms on catheters. Furthermore, the insertion of a catheter into the bladder provokes an inflammatory response that results in the catheter being covered with the blood-clotting protein fibrinogen, which shields bacteria from the antibiotics.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) worked with a mouse model that demonstrated formation of catheter-associated biofilms by Enterococcus faecalis.

They reported in the September 17, 2014, online edition of the journal Science Translational Medicine that biofilm formation depended on EbpA, which is the minor subunit at the tip of a heteropolymeric surface fiber known as the endocarditis- and biofilm-associated pilus (Ebp).

EbpA is a protein of the adhesin family that mediates bacterial attachment to host fibrinogen, which is released and deposited on catheters after introduction of the catheter into the mouse bladder. Fibrinogen-binding activity resides in the amino-terminal domain of EbpA (EbpANTD), and vaccination with EbpA and EbpANTD, but not its carboxyl-terminal domain or other Ebp subunits, inhibited biofilm formation in vivo and protected against catheter-associated urinary tract infection.

Analyses in vitro demonstrated that anti-bacterial protection was associated with a serum antibody response that blocked EbpA binding to fibrinogen and the formation of a fibrinogen-dependent biofilm on catheters.

“Catheter-associated urinary tract infections are very common,” said first author, Dr. Ana Lidia Flores-Mireles, a postdoctoral research associate in molecular microbiology at the Washington University School of Medicine. “Antibiotic resistance is increasing rapidly in the bacteria that cause these infections, so developing new treatments is a priority.”

“We took a closer look at this protein and found that one-half of it is essential for binding to fibrinogen to induce infections,” said Dr. Flores-Mireles. “This protein is like the anchor of a boat. Without the anchor, the infection is at the mercy of the waves and gets washed away. The segment of genetic code that makes this part of the protein is also found in the genes of many other bacteria that cause urinary tract infections, so a vaccine, antibody, or drug that blocks this part of the protein may help prevent other infections linked to catheters in the urinary tract and in other parts of the body.”

Related Links:

Washington University School of Medicine


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more